The Community Climate System Model Version 3 (CCSM3)

William D. Collins National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by William D. Collins in
Current site
Google Scholar
PubMed
Close
,
Cecilia M. Bitz University of Washington, Seattle, Washington

Search for other papers by Cecilia M. Bitz in
Current site
Google Scholar
PubMed
Close
,
Maurice L. Blackmon National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Maurice L. Blackmon in
Current site
Google Scholar
PubMed
Close
,
Gordon B. Bonan National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Gordon B. Bonan in
Current site
Google Scholar
PubMed
Close
,
Christopher S. Bretherton University of Washington, Seattle, Washington

Search for other papers by Christopher S. Bretherton in
Current site
Google Scholar
PubMed
Close
,
James A. Carton University of Maryland, College Park, College Park, Maryland

Search for other papers by James A. Carton in
Current site
Google Scholar
PubMed
Close
,
Ping Chang Texas A&M University, College Station, Texas

Search for other papers by Ping Chang in
Current site
Google Scholar
PubMed
Close
,
Scott C. Doney Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Scott C. Doney in
Current site
Google Scholar
PubMed
Close
,
James J. Hack National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by James J. Hack in
Current site
Google Scholar
PubMed
Close
,
Thomas B. Henderson National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Thomas B. Henderson in
Current site
Google Scholar
PubMed
Close
,
Jeffrey T. Kiehl National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jeffrey T. Kiehl in
Current site
Google Scholar
PubMed
Close
,
William G. Large National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by William G. Large in
Current site
Google Scholar
PubMed
Close
,
Daniel S. McKenna National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Daniel S. McKenna in
Current site
Google Scholar
PubMed
Close
,
Benjamin D. Santer Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Benjamin D. Santer in
Current site
Google Scholar
PubMed
Close
, and
Richard D. Smith Los Alamos National Laboratory, Los Alamos, New Mexico

Search for other papers by Richard D. Smith in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land–atmosphere fluxes, ocean mixed layer processes, and sea ice dynamics. There are significant improvements in the sea ice thickness, polar radiation budgets, tropical sea surface temperatures, and cloud radiative effects. CCSM3 can produce stable climate simulations of millennial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean–atmosphere fluxes in coastal regions west of continents, the spectrum of ENSO variability, the spatial distribution of precipitation in the tropical oceans, and continental precipitation and surface air temperatures. Work is under way to extend CCSM to a more accurate and comprehensive model of the earth's climate system.

Corresponding author address: Dr. William D. Collins, NCAR, P.O. Box 3000, Boulder, CO 80307. Email: wcollins@ucar.edu

Abstract

The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land–atmosphere fluxes, ocean mixed layer processes, and sea ice dynamics. There are significant improvements in the sea ice thickness, polar radiation budgets, tropical sea surface temperatures, and cloud radiative effects. CCSM3 can produce stable climate simulations of millennial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean–atmosphere fluxes in coastal regions west of continents, the spectrum of ENSO variability, the spatial distribution of precipitation in the tropical oceans, and continental precipitation and surface air temperatures. Work is under way to extend CCSM to a more accurate and comprehensive model of the earth's climate system.

Corresponding author address: Dr. William D. Collins, NCAR, P.O. Box 3000, Boulder, CO 80307. Email: wcollins@ucar.edu

Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor, 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • Alexander, M., and Coauthors, 2006: Extratropical atmosphere–ocean variability in CCSM3. J. Climate, 19 , 24962525.

  • Ammann, C. M., G. A. Meehl, W. M. Washington, and C. S. Zender, 2003: A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys. Res. Lett, 30 .1657, doi:10.1029/2003GL016875.

    • Search Google Scholar
    • Export Citation
  • Barth, M. C., P. J. Rasch, J. T. Kiehl, C. M. Benkovitz, and S. E. Schwartz, 2000: Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features and sensitivity to aqueous chemistry. J. Geophys. Res, 105 , 13871415.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., and S. Levis, 2006: Evaluating aspects of the Community Land and Atmosphere Models (CLM3 and CAM) using a dynamic global vegetation model. J. Climate, 19 , 22902301.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., S. Levis, L. Kergoat, and K. W. Oleson, 2001: Landscapes as patches of plant functional types: An integrating approach for climate and ecosystem models. Global Biogeochem. Cycles, 16 , 5.15.23.

    • Search Google Scholar
    • Export Citation
  • Bourke, R. H., and R. P. Garrett, 1987: Sea ice thickness distribution in the Arctic Ocean. Cold Reg. Sci. Technol, 13 , 259280.

  • Boville, B. A., and P. R. Gent, 1998: The NCAR Climate System Model, version one. J. Climate, 11 , 11151130.

  • Boville, B. A., P. J. Rasch, J. J. Hack, and J. R. McCaa, 2006: Representation of clouds and precipitation processes in the Community Atmosphere Model (CAM3). J. Climate, 19 , 21842198.

    • Search Google Scholar
    • Export Citation
  • Brandt, R. E., S. G. Warren, T. C. Grenfell, and A. P. Worby, 2005: Surface albedo of the Antarctic sea ice zone. J. Climate, 18 , 36063622.

    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., and D. H. Bromwich, 1998: Polar radiation budgets of the NCAR CCM3. J. Climate, 11 , 12461269.

  • Briegleb, B. P., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, M. M. Holland, J. L. Schramm, and R. E. Moritz, 2004: Scientific description of the sea ice component in the Community Climate System Model, Version Three. Tech. Rep. NCAR/TN-463+STR, National Center for Atmospheric Research, Boulder, CO, 78 pp.

  • Bryan, F. O., G. Danabasoglu, N. Nakashiki, Y. Yoshida, D-H. Kim, J. Tsutsui, and S. C. Doney, 2006: Response of North Atlantic thermohaline circulation and ventilation to increasing carbon dioxide in CCSM3. J. Climate, 19 , 23822397.

    • Search Google Scholar
    • Export Citation
  • Bryden, H., and S. Imawaki, 2001: Ocean heat transport. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77, Academic Press, 317–336.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., P. Gloerson, C. L. Parkinson, J. C. Comiso, and H. J. Zwally, 1997: Observed hemispheric asymmetry in global sea ice changes. Science, 278 , 11041106.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., 2001: Parameterization of generalized cloud overlap for radiative calculations in general circulation models. J. Atmos. Sci, 58 , 32243242.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., P. J. Rasch, B. E. Eaton, B. Khattatov, J-F. Lamarque, and C. S. Zender, 2001: Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. J. Geophys. Res, 106 , 73137336.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., J. K. Hackney, and D. P. Edwards, 2002a: A new parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere Model. J. Geophys. Res, 107 .8028, doi:10.1029/2000JD000032.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., P. J. Rasch, B. E. Eaton, D. W. Fillmore, J. T. Kiehl, T. C. Beck, and C. S. Zender, 2002b: Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts. J. Geophys. Res, 107 .4664, doi:10.1029/2001JD001365.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM3). Tech. Rep. NCAR/TN-464+STR, National Center for Atmospheric Research, Boulder, CO, 226 pp.

  • Collins, W. D., and Coauthors, 2006a: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., J. M. Lee-Taylor, D. P. Edwards, and G. L. Francis, 2006b: Effects of increased near-infrared absorption by water vapor on the climate system. J. Geophys. Res, in press.

    • Search Google Scholar
    • Export Citation
  • Connolley, W. M., J. M. Gregory, E. C. Hunke, and A. J. McLaren, 2004: On the consistent scaling of terms in the sea-ice dynamics equation. J. Phys. Oceanogr, 34 , 17761780.

    • Search Google Scholar
    • Export Citation
  • Craig, A. P., R. L. Jacob, B. Kauffman, T. Bettge, J. Larson, E. Ong, C. Ding, and Y. He, 2005: Cpl6: The new extensible, high-performance parallel coupler for the Community Climate System Model. Int. J. High Perform. C, 19 , 309327.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., W. G. Large, J. J. Tribbia, P. R. Gent, B. P. Briegleb, and J. C. McWilliams, 2006: Diurnal coupling in the tropical oceans of CCSM3. J. Climate, 19 , 23472365.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Capotondi, R. Saravanan, and A. Phillips, 2006: Tropical Pacific and Atlantic variability in CCSM3. J. Climate, 19 , 24512481.

    • Search Google Scholar
    • Export Citation
  • DeWeaver, E., and C. M. Bitz, 2006: Atmospheric circulation and its effect on Arctic sea ice in CCSM3 at medium and high resolution. J. Climate, 19 , 24152436.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., K. W. Oleson, G. Bonan, F. Hoffman, P. Thornton, M. Vertenstein, Z-L. Yang, and X. Zeng, 2006: The Community Land Model and its climate statistics as a component of the Community Climate System Model. J. Climate, 19 , 23022324.

    • Search Google Scholar
    • Export Citation
  • Drake, J. B., P. W. Jones, and G. R. Carr, 2005: Overview of the software design of the CCSM. Int. J. High Perform. C, 19 , 177186.

  • Gent, P. R., F. O. Bryan, G. Danabasoglu, K. Lindsay, D. Tsumune, M. W. Hecht, and S. C. Doney, 2006: Ocean chlorofluorocarbon and heat uptake during the twentieth century in the CCSM3. J. Climate, 19 , 23662381.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., J. M. Caron, G. Danabasoglu, K. W. Oleson, C. Bitz, and J. Truesdale, 2006: CCSM–CAM3 climate simulation sensitivity to changes in horizontal resolution. J. Climate, 19 , 22672289.

    • Search Google Scholar
    • Export Citation
  • Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D. Cess, and G. G. Gibson, 1990: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res, 95 , 1868718703.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, and J. L. Schramm, 2006: Influence of the sea ice thickness distribution on polar climate in CCSM3. J. Climate, 19 , 23982414.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Eds. 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 944 pp.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, A. Phillips, J. Caron, and J. Yin, 2006: The dynamical simulation of the Community Atmospheric Model version 3 (CAM3). J. Climate, 19 , 21622183.

    • Search Google Scholar
    • Export Citation
  • Kållberg, P., A. Simmons, S. Uppala, and M. Fuentes, 2004: The ERA-40 archive. Tech. Rep. ERA-40 Project Rep. 17, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom, 35 pp.

  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth's annual global mean energy budget. Bull. Amer. Meteor. Soc, 78 , 197208.

  • Kiehl, J. T., and P. R. Gent, 2004: The Community Climate System Model, version 2. J. Climate, 17 , 36663682.

  • Kiehl, J. T., C. A. Shields, J. J. Hack, and W. D. Collins, 2006: The climate sensitivity of the Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 25842596.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc, 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and G. Danabasoglu, 2006: Attribution and impacts of upper-ocean biases in CCSM3. J. Climate, 19 , 23252346.

  • Levis, S., G. B. Bonan, M. Vertenstein, and K. W. Oleson, 2004: The Community Land Model's Dynamic Global Vegetation Model (CLM-DGVM): Technical description and user's guide. Tech. Rep. NCAR/TN-459+IA, National Center for Atmospheric Research, Boulder, CO, 50 pp.

  • Levitus, S., and Coauthors, 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Libscomb, W. H., and E. C. Hunke, 2004: Modeling sea-ice transport using incremental remapping. Mon. Wea. Rev, 132 , 13411354.

  • Lin, S-J., 2004: A vertically Lagrangian finite-volume dynamical core for global models. Mon. Wea. Rev, 132 , 22932307.

  • Lin, S-J., and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport schemes. Mon. Wea. Rev, 124 , 20462070.

  • Meehl, G. A., J. M. Arblaster, D. M. Lawrence, A. Seth, E. K. Schneider, B. P. Kirtman, and D. Min, 2006: Monsoon regimes in the CCSM3. J. Climate, 19 , 24822495.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., 2003: Ocean radiant heating in climate models. J. Climate, 16 , 13371351.

  • Oleson, K. W., G. B. Bonan, C. Schaaf, F. Gao, Y. Jin, and A. Strahler, 2003: Assessment of global climate model land surface albedo using MODIS data. Geophys. Res. Lett, 30 .1443, doi:10.1029/2002GL016749.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). Tech. Rep. NCAR/TN-461+STR, National Center for Atmospheric Research, Boulder, CO, 174 pp.

  • Otto-Bliesner, B. L., E. C. Brady, G. Clauzet, R. A. Tomas, S. Levis, and Z. Kothavala, 2006: Last Glacial Maximum and Holocene climate in CCSM3. J. Climate, 19 , 25262544.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., T. C. Grenfell, B. Light, and P. V. Hobbs, 2002: Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res, 107 .8044, doi:10.1029/2000JC000438.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., C. W. Fairall, E. L. Andreas, P. S. Guest, and D. K. Perovich, 2002: Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res, 107 .8045, doi:10.1029/2000JC000705.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., M. C. Barth, J. T. Kiehl, S. E. Schwartz, and C. M. Benkovitz, 2000: A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric Research Community Climate Model, Version 3. J. Geophys. Res, 105 , 13671385.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., W. D. Collins, and B. E. Eaton, 2001: Understanding the Indian Ocean Experiment (INDOEX) aerosol distributions with an aerosol assimilation. J. Geophys. Res, 106 , 73377356.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Powell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res, 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rothrock, D. A., Y. Yu, and G. A. Maykut, 1999: Thinning of the arctic sea-ice cover. Geophys. Res. Lett, 26 , 34693472.

  • Schmidt, G. A., C. M. Bitz, U. Mikolajewicz, and L. B. Tremblay, 2004: Ice-ocean boundary conditions for coupled models. Ocean Modell, 7 , 5974.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., and P. R. Gent, 2002: Reference manual for the Parallel Ocean Program (POP), ocean component of the Community Climate System Model (CCSM2.0 and 3.0). Tech. Rep. LA-UR-02-2484, Los Alamos National Laboratory. [Available online at http://www.ccsm.ucar.edu/models/ccsm3.0/pop.].

  • Smith, R. D., S. Kortas, and B. Meltz, 1995: Curvilinear coordinates for global ocean models. Tech. Rep. LA-UR-95-1146, Los Alamos National Laboratory, 50 pp.

  • Timmermann, R., A. Worby, H. Goosse, and T. Fichefet, 2004: Utilizing the aspect sea ice thickness data set to evaluate a global coupled sea ice-ocean model. J. Geophys. Res, 109 .C07017, doi:10.1029/2003JC002242.

    • Search Google Scholar
    • Export Citation
  • Williamson, D. L., 2002: Time-split versus process-split coupling of parameterizations and dynamical core. Mon. Wea. Rev, 130 , 20242041.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, 2000: Terrestrial air temperature and precipitation: Monthly and annual climatologies. [Available online at http://climate.geog.udel.edu/~climate.].

  • Yeager, S. G., C. A. Shields, W. G. Large, and J. J. Hack, 2006: The low-resolution CCSM3. J. Climate, 19 , 25452566.

  • Zhang, Y. C., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to the top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res, 109 .D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7565 1818 185
PDF Downloads 4337 890 64