• Allan, R. J., N. Nicholls, P. D. Jones, and I. J. Butterworth, 1991: A further extension of the Tahiti–Darwin SOI, early SOI results and Darwin pressures. J. Climate, 4 , 743749.

    • Search Google Scholar
    • Export Citation
  • Ballenzweig, E. M., 1959: Relation of long-period circulation anomalies to tropical storm formation and motion. J. Meteor., 16 , 121139.

    • Search Google Scholar
    • Export Citation
  • Barbieri, M. M., and J. O. Berger, 2002: Optimal predictive model selection. Discussion Paper 02-02, Institute of Statistics and Decision Sciences, Duke University, 28 pp.

  • Berliner, L. M., C. K. Wikle, and N. Cressie, 2000: Long-lead prediction of Pacific SSTs via Bayesian dynamic modeling. J. Climate, 13 , 39533968.

    • Search Google Scholar
    • Export Citation
  • Bossak, B. H., and J. B. Elsner, 2004: Plotting early nineteenth century hurricane information. Eos, Trans. Amer. Geophys. Union, 85 ..

  • Bove, M. C., J. B. Elsner, C. W. Landsea, X-F. Niu, and J. J. O’Brien, 1998: Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull. Amer. Meteor. Soc., 79 , 24772482.

    • Search Google Scholar
    • Export Citation
  • Chu, P. S., and X. Zhao, 2004: Bayesian change-point analysis of tropical cyclone activity: The central North Pacific case. J. Climate, 17 , 48934901.

    • Search Google Scholar
    • Export Citation
  • Congdon, P., 2003: Applied Bayesian Modelling. John Wiley and Sons, 530 pp.

  • Elsner, J. B., 2003: Tracking hurricanes. Bull. Amer. Meteor. Soc., 84 , 353356.

  • Elsner, J. B., and C. P. Schmertmann, 1994: Assessing forecast skill through cross validation. Wea. Forecasting, 9 , 619624.

  • Elsner, J. B., and B. H. Bossak, 2001: Bayesian analysis of U.S. hurricane climate. J. Climate, 14 , 43414350.

  • Elsner, J. B., and B. H. Bossak, 2004: Hurricane landfall probability and climate. Hurricanes and Typhoons: Past, Present, and Future, R. J. Murnane and K.-b. Liu, Eds., Columbia University Press, 333–353.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., and T. H. Jagger, 2004: A hierarchical Bayesian approach to seasonal hurricane modeling. J. Climate, 17 , 28132827.

  • Elsner, J. B., and T. H. Jagger, 2006: Comparison of hindcasts anticipating the 2004 Florida hurricane season. Wea. Forecasting, 21 , 184194.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., G. S. Lehmiller, and T. B. Kimberlain, 1996: Objective classification of Atlantic basin hurricanes. J. Climate, 9 , 28802889.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., A. B. Kara, and M. A. Owens, 1999: Fluctuations in North Atlantic hurricanes. J. Climate, 12 , 427437.

  • Elsner, J. B., T. H. Jagger, and X. Niu, 2000a: Shifts in the rates of major hurricane activity over the North Atlantic during the 20th century. Geophys. Res. Lett., 27 , 17431746.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., K-b Liu, and B. Kocher, 2000b: Spatial variations in major U.S. hurricane activity: Statistics and a physical mechanism. J. Climate, 13 , 22932305.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., B. H. Bossak, and X-F. Niu, 2001: Secular changes to the ENSO–U.S. hurricane relationship. Geophys. Res. Lett., 28 , 41234126.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., X-F. Niu, and T. H. Jagger, 2004: Detecting shifts in hurricane rates using a Markov chain Monte Carlo approach. J. Climate, 17 , 26522666.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nunez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28 , 20772080.

    • Search Google Scholar
    • Export Citation
  • Gelfand, A. E., and A. F. M. Smith, 1990: Sampling-based approaches to calculating marginal densities. J. Amer. Stat. Assoc., 85 , 398409.

    • Search Google Scholar
    • Export Citation
  • Geman, S., and D. Geman, 1984: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 6 , 721741.

    • Search Google Scholar
    • Export Citation
  • Gilks, W. R., A. Thomas, and D. J. Spiegelhalter, 1994: A language and program for complex Bayesian modelling. Statistician, 43 , 169178.

    • Search Google Scholar
    • Export Citation
  • Gilks, W. R., S. Richardson, and D. J. Spiegelhalter, 1998: Markov Chain Monte Carlo in Practice. Chapman and Hall/CRC, 486 pp.

  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 239 , 474479.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., C. W. Landsea, P. W. Mielke Jr., and K. J. Berry, 1992: Predicting Atlantic seasonal hurricane activity 6–11 months in advance. Wea. Forecasting, 7 , 440455.

    • Search Google Scholar
    • Export Citation
  • Hess, J. C., J. B. Elsner, and N. E. LaSeur, 1995: Improving seasonal hurricane predictions for the Atlantic basin. Wea. Forecasting, 10 , 425432.

    • Search Google Scholar
    • Export Citation
  • Jagger, T. H., J. B. Elsner, and X. Niu, 2001: A dynamic probability model of hurricane winds in coastal counties of the United States. J. Appl. Meteor., 40 , 853863.

    • Search Google Scholar
    • Export Citation
  • Jagger, T. H., X. Niu, and J. B. Elsner, 2002: A space–time model for seasonal hurricane prediction. Int. J. Climatol., 22 , 451465.

    • Search Google Scholar
    • Export Citation
  • Jarrell, J. D., P. J. Hebert, and M. Mayfield, 1992: Hurricane experience levels of coastal county populations from Texas to Maine. NOAA Tech. Memo. NWS NHC-46, 152 pp.

  • Jones, P. D., T. Jónsson, and D. Wheeler, 1997: Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int. J. Climatol., 17 , 14331450.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., 2002: Techniques for estimating uncertainty in climate change scenarios and impact studies. Climate Res., 20 , 167185.

  • Können, G. P., P. D. Jones, M. H. Kaltofen, and R. J. Allan, 1998: Pre-1866 extensions of the Southern Oscillation index using early Indonesian and Tahitian meteorological readings. J. Climate, 11 , 23252339.

    • Search Google Scholar
    • Export Citation
  • Lehmiller, G. S., T. B. Kimberlain, and J. B. Elsner, 1997: Seasonal prediction models for North Atlantic basin hurricane location. Mon. Wea. Rev., 125 , 17801791.

    • Search Google Scholar
    • Export Citation
  • LeRoy, S., 1998: Detecting climate signals: Some Bayesian aspects. J. Climate, 11 , 640651.

  • Liu, K-b, and M. L. Fearn, 2000: Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwestern Florida from lake sediment records. Quat. Res., 54 , 238245.

    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. L. Chan, 2003: Climatological characteristics and seasonal forecasting of tropical cyclones making landfall along the South China coast. Mon. Wea. Rev., 131 , 16501662.

    • Search Google Scholar
    • Export Citation
  • McDonnell, K. A., and N. J. Holbrook, 2004: A Poisson regression model of tropical cyclogenesis for the Australian–Southwest Pacific Ocean region. Wea. Forecasting, 19 , 440455.

    • Search Google Scholar
    • Export Citation
  • Michaelsen, J., 1987: Cross-validation in statistical climate forecast models. J. Climate Appl. Meteor., 26 , 15891600.

  • Murnane, R. J., and Coauthors, 2000: Model estimates hurricane wind speed probabilities. Eos, Trans. Amer. Geophys. Union, 81 , 433438.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and P. D. Jones, 1987: An extension of the Tahiti–Darwin Southern Oscillation index. Mon. Wea. Rev., 115 , 21612165.

    • Search Google Scholar
    • Export Citation
  • Saunders, M. A., and A. S. Lea, 2005: Seasonal prediction of hurricane activity reaching the coast of the United States. Nature, 434 , 10051008.

    • Search Google Scholar
    • Export Citation
  • Solow, A. R., 1988: A Bayesian approach to statistical inference about climate change. J. Climate, 1 , 512521.

  • Solow, A. R., and L. Moore, 2000: Testing for a trend in a partially incomplete hurricane record. J. Climate, 13 , 36963699.

  • Spiegelhalter, D. J., N. G. Best, W. R. Gilks, and H. Inskip, 1996: Hepatitis B: A case study in MCMC methods. Markov Chain Monte Carlo in Practice, W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Eds., Chapman and Hall/CRC, 21–43.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and T. N. Stockdale, 2001: Seasonal forecasting of tropical storms using coupled GCM integrations. Mon. Wea. Rev., 129 , 25212537.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., D. Anderson, and T. Stockdale, 2003: Seasonal forecasting of tropical cyclone landfall over Mozambique. J. Climate, 16 , 39323945.

    • Search Google Scholar
    • Export Citation
  • Wikle, C. K., 2000: Hierarchical space–time dynamic models. Lecture Notes in Statistics: Studies in the Atmospheric Sciences, L. M. Berliner, D. Nychka, and T. Hoar, Eds., Springer-Verlag, 45–64.

    • Search Google Scholar
    • Export Citation
  • Wikle, C. K., and C. J. Anderson, 2003: Climatological analysis of tornado report counts using a hierarchical Bayesian spatiotemporal model. J. Geophys. Res., 108 .9005, doi:10.1029/2002JD002806.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 478 181 15
PDF Downloads 365 124 10

Prediction Models for Annual U.S. Hurricane Counts

James B. ElsnerDepartment of Geography, The Florida State University, Tallahassee, Florida

Search for other papers by James B. Elsner in
Current site
Google Scholar
PubMed
Close
and
Thomas H. JaggerDepartment of Geography, The Florida State University, Tallahassee, Florida

Search for other papers by Thomas H. Jagger in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The authors build on their efforts to understand and predict coastal hurricane activity by developing statistical seasonal forecast models that can be used operationally. The modeling strategy uses May–June averaged values representing the North Atlantic Oscillation (NAO), the Southern Oscillation index (SOI), and the Atlantic multidecadal oscillation to predict the probabilities of observing U.S. hurricanes in the months ahead (July–November). The models are developed using a Bayesian approach and make use of data that extend back to 1851 with the earlier hurricane counts (prior to 1899) treated as less certain relative to the later counts. Out-of-sample hindcast skill is assessed using the mean-squared prediction error within a hold-one-out cross-validation exercise. Skill levels are compared to climatology. Predictions show skill above climatology, especially using the NAO + SOI and the NAO-only models. When the springtime NAO values are below normal, there is a heightened risk of U.S. hurricane activity relative to climatology. The preliminary NAO value for 2005 is −0.565 standard deviations so the NAO-only model predicts a 13% increase over climatology of observing three or more U.S. hurricanes.

Corresponding author address: Dr. James B. Elsner, Dept. of Geography, The Florida State University, Tallahassee, FL 32306. Email: jelsner@garnet.fsu.edu

Abstract

The authors build on their efforts to understand and predict coastal hurricane activity by developing statistical seasonal forecast models that can be used operationally. The modeling strategy uses May–June averaged values representing the North Atlantic Oscillation (NAO), the Southern Oscillation index (SOI), and the Atlantic multidecadal oscillation to predict the probabilities of observing U.S. hurricanes in the months ahead (July–November). The models are developed using a Bayesian approach and make use of data that extend back to 1851 with the earlier hurricane counts (prior to 1899) treated as less certain relative to the later counts. Out-of-sample hindcast skill is assessed using the mean-squared prediction error within a hold-one-out cross-validation exercise. Skill levels are compared to climatology. Predictions show skill above climatology, especially using the NAO + SOI and the NAO-only models. When the springtime NAO values are below normal, there is a heightened risk of U.S. hurricane activity relative to climatology. The preliminary NAO value for 2005 is −0.565 standard deviations so the NAO-only model predicts a 13% increase over climatology of observing three or more U.S. hurricanes.

Corresponding author address: Dr. James B. Elsner, Dept. of Geography, The Florida State University, Tallahassee, FL 32306. Email: jelsner@garnet.fsu.edu

Save