• Adams, D., and A. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78 , 21972213.

  • Anderson, T., 1978: The Statistical Analysis of Time Series. John Wiley & Sons, 704 pp.

  • Badan-Dangon, A., C. E. Dorman, M. A. Merrifield, and C. D. Winant, 1991: The lower atmosphere over the Gulf of California. J. Geophys. Res., 96 , 1687716896.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., 1995: Monte Carlo climate forecasting. J. Climate, 8 , 10051022.

  • Bechtold, P., J-P. Chaboureau, A. Beljaars, A. Betts, M. Kohler, M. Miller, and J-L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130 , 31193137.

    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., and M. S. Fox-Rabinovitz, 2003: Multiscale diagnosis of the North American monsoon system using a variable resolution GCM. J. Climate, 16 , 19291947.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and C. Jakob, 2002a: Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data. J. Geophys. Res., 107 .8045, doi:10.1029/2001JD000427.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and C. Jakob, 2002b: Study of diurnal cycle of convective precipitation over Amazonia using a single column model. J. Geophys. Res., 107 .4732, doi:10.1029/2002JD002264.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., P. Viterbo, and E. Wood, 1998: Surface energy and water balance for the Arkansas–Red River basin from the ECMWF reanalysis. J. Climate, 11 , 28812897.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., J. Ball, and P. Viterbo, 1999: Basin-scale surface water and energy budgets for the Mississippi from the ECMWF reanalysis. J. Geophys. Res., 104 , 1929319306.

    • Search Google Scholar
    • Export Citation
  • Bordoni, S., P. E. Ciesielski, R. H. Johnson, B. D. McNoldy, and B. Stevens, 2004: The low-level circulation of the North American monsoon as revealed by QuickSCAT. Geophys. Res. Lett., 31 .L10109, doi:10.1029/2004GL020009.

    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., J. C. Collier, G. R. North, Q. Wu, E. Ha, and J. Hardin, 2005: The diurnal cycle of tropical precipitation in Tropical Rainfall Measuring Mission (TRMM) satellite and ocean buoy rain gauge data. J. Geophys. Res., 110 .D21104, doi:10.1029/2005JD005763.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J-P., F. Guichard, J-L. Redelsperger, and J-P. Lafore, 2004: The role of stability and moisture in the diurnal cycle of convection over land. Quart. J. Roy. Meteor. Soc., 130 , 31053117.

    • Search Google Scholar
    • Export Citation
  • Chen, M., R. E. Dickinson, X. Zeng, and A. N. Hahmann, 1996: Comparison of precipitation observed over the continental United States to that simulated by a climate model. J. Climate, 9 , 22332249.

    • Search Google Scholar
    • Export Citation
  • Collier, J. C., and K. P. Bowman, 2004: Diurnal cycle of tropical precipitation in a general circulation model. J. Geophys. Res., 109 .D17105, doi:10.1029/2004JD004818.

    • Search Google Scholar
    • Export Citation
  • Collier, J. C., K. P. Bowman, and G. R. North, 2004: A comparison of tropical precipitation simulated by the NCAR Community Climate Model CCM3 with that observed by the Tropical Rainfall Measuring Mission (TRMM) satellite. J. Climate, 17 , 33193333.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17 , 930951.

    • Search Google Scholar
    • Export Citation
  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104 , 63776402.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., W. J. Shuttleworth, and Z-L. Yang, 2002: Sensitivity of the modeled North American monsoon regional climate to convective parameterization. Mon. Wea. Rev., 130 , 12821298.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., W. J. Shuttleworth, and Z-L. Yang, 2003: Hydrometeorological response of the modeled North American monsoon to convective parameterization. J. Hydrometeor., 4 , 235250.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2004: Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Quart. J. Roy. Meteor. Soc., 130 , 31393172.

    • Search Google Scholar
    • Export Citation
  • Hales Jr., J. E., 1972: Surges of maritime tropical air northward over the Gulf of California. Mon. Wea. Rev., 100 , 298306.

  • Higgins, R. W., J. Janowiak, and Y. Yao, 1996: A gridded hourly precipitation data base for the United States (1963–1993). NCEP/Climate Prediction Center Atlas, No. 1, NOAA/NWS/NCEP, 47 pp.

  • Higgins, R. W., Y. Yao, and X. Wang, 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10 , 26002622.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kiehl, J., J. Hack, G. Bonan, B. Boville, D. Williamson, and P. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Liang, X-Z., L. Li, A. Dai, and K. E. Kunkel, 2004: Regional climate model simulations of summer precipitation diurnal cycle over the United States. Geophys. Res. Lett., 31 .L24208, doi:10.1029/2004GL021054.

    • Search Google Scholar
    • Export Citation
  • Lin, X., D. A. Randall, and L. D. Fowler, 2000: Diurnal variations of the hydrologic cycle and radiative fluxes: Comparisons between observations and a GCM. J. Climate, 13 , 41594179.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and D. A. Dazlich, and Harshvardhan, 1991: Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci., 48 , 4062.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., 1967: Atmospheric water vapor transport and the water balance of North America: Part I. Characteristics of the water vapor flux field. Mon. Wea. Rev., 95 , 403426.

    • Search Google Scholar
    • Export Citation
  • Reed, T. R., 1933: The North American high-level anticyclone. Mon. Wea. Rev., 61 , 321325.

  • Schmitz, J. T., and S. L. Mullen, 1996: Water vapor transport associated with the summertime North American monsoon as depicted by ECMWF analyses. J. Climate, 9 , 16211634.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., D. Williamson, and F. Zwiers, 2000: The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. Lawrence Livermore National Laboratory Program for Climate Model Diagnosis and Intercomparison Tech. Rep. 60, 25 pp.

  • Williamson, D., and Coauthors, 2005: Moisture and temperature balances at the Atmospheric Radiation Measurement Southern Great Plains Site in forecasts with the Community Atmosphere Model (CAM2). J. Geophys. Res., 110 .D15S16, doi:10.1029/2004JD005109.

    • Search Google Scholar
    • Export Citation
  • Xu, J., and E. E. Small, 2002: Simulating summertime rainfall variability in the North American monsoon region: The influence of convection and radiation parameterizations. J. Geophys. Res., 107 .4727, doi:10.1029/2001JD002047.

    • Search Google Scholar
    • Export Citation
  • Yang, Z-L., D. Gochis, and W. J. Shuttleworth, 2001: Evaluation of the simulations of the North American monsoon in the NCAR CCM3. Geophys. Res. Lett., 28 , 12111214.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107 .4220, doi:10.1029/2001JD001005.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33 , 407446.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and M. Mu, 2005a: Effects of modifications to the Zhang-McFarlane convection parameterization on the simulation of the tropical precipitation in the National Center for Atmospheric Research Community Climate Model, version 3. J. Geophys. Res., 110 .D09109, doi:10.1029/2004JD005617.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and M. Mu, 2005b: Simulation of the Madden–Julian oscillation in the NCAR CCM3 using a revised Zhang–McFarlane convection parameterization scheme. J. Climate, 18 , 40464064.

    • Search Google Scholar
    • Export Citation
  • Zou, C-Z., and W. Zheng, 2004: Simulation of diurnal patterns of summer precipitation in the North American monsoon: An assessment using TRMM. Geophys. Res. Lett., 31 .L07105, doi:10.1029/2004GL019415.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 59 16 0
PDF Downloads 11 8 0

Simulation of the North American Monsoon by the NCAR CCM3 and Its Sensitivity to Convection Parameterization

J. Craig CollierCenter for Atmospheric Sciences, Scripps Institution of Oceanography, La Jolla, California

Search for other papers by J. Craig Collier in
Current site
Google Scholar
PubMed
Close
and
Guang J. ZhangCenter for Atmospheric Sciences, Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Guang J. Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two 9-yr runs of the NCAR Community Climate Model version 3 (CCM3) are compared in their simulations of the North American summer monsoon. In a control simulation, the Zhang–McFarlane deep convection scheme is used. For an experimental simulation, the following modifications to the scheme are implemented. The closure is based on the large-scale forcing of virtual temperature, and a relative humidity threshold on convective parcels lifted from the boundary layer is applied. The sensitivity to these modifications for simulating the North American monsoon is investigated. Model validation relies on hourly precipitation rates from surface gauges over the United States, hourly precipitation rates derived from the combination of microwave and radar measurements from NASA’s Tropical Rainfall Measuring Mission (TRMM) satellite over Mexico, and CAPE values as calculated from temperature, specific humidity, and pressure fields from the NCEP–NCAR reanalysis. Results show that the experimental run improves the timing of the monsoon onset and peak in the regions of core monsoon influence considered here, though it increases a negative bias in the peak monsoon intensity in one region of northern Mexico. Sensitivity of the diurnal cycle of precipitation to modifications in the convective scheme is highly geographically dependent. Using a combination of gauge-based rainfall rates and reanalysis-based CAPE, it is found that improvements in the simulated diurnal cycle are confined to a convective regime in which the diurnal evolution of precipitation is observed to lag that of CAPE. For another regime, in which CAPE is observed to be approximately in phase with precipitation, model phase biases increase nearly everywhere. Some of the increased phase biases in the latter regime are primarily because of application of the relative humidity threshold.

Corresponding author address: J. Craig Collier, Center for Atmospheric Sciences, Scripps Institution of Oceanography, 9500 Gilman Dr., La Jolla, CA 92093-0221. Email: craigc@fiji.ucsd.edu

Abstract

Two 9-yr runs of the NCAR Community Climate Model version 3 (CCM3) are compared in their simulations of the North American summer monsoon. In a control simulation, the Zhang–McFarlane deep convection scheme is used. For an experimental simulation, the following modifications to the scheme are implemented. The closure is based on the large-scale forcing of virtual temperature, and a relative humidity threshold on convective parcels lifted from the boundary layer is applied. The sensitivity to these modifications for simulating the North American monsoon is investigated. Model validation relies on hourly precipitation rates from surface gauges over the United States, hourly precipitation rates derived from the combination of microwave and radar measurements from NASA’s Tropical Rainfall Measuring Mission (TRMM) satellite over Mexico, and CAPE values as calculated from temperature, specific humidity, and pressure fields from the NCEP–NCAR reanalysis. Results show that the experimental run improves the timing of the monsoon onset and peak in the regions of core monsoon influence considered here, though it increases a negative bias in the peak monsoon intensity in one region of northern Mexico. Sensitivity of the diurnal cycle of precipitation to modifications in the convective scheme is highly geographically dependent. Using a combination of gauge-based rainfall rates and reanalysis-based CAPE, it is found that improvements in the simulated diurnal cycle are confined to a convective regime in which the diurnal evolution of precipitation is observed to lag that of CAPE. For another regime, in which CAPE is observed to be approximately in phase with precipitation, model phase biases increase nearly everywhere. Some of the increased phase biases in the latter regime are primarily because of application of the relative humidity threshold.

Corresponding author address: J. Craig Collier, Center for Atmospheric Sciences, Scripps Institution of Oceanography, 9500 Gilman Dr., La Jolla, CA 92093-0221. Email: craigc@fiji.ucsd.edu

Save