• Abdalati, W., and K. Steffen, 1997: The apparent effect of the Mt. Pinatubo eruptions on the Greenland ice sheet melt conditions. Geophys. Res. Lett., 24 , 17951797.

    • Search Google Scholar
    • Export Citation
  • Arendt, A. A., K. A. Echelmeyer, W. D. Harrison, C. S. Lingle, and V. B. Valentine, 2002: Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science, 297 , 382386.

    • Search Google Scholar
    • Export Citation
  • Baldwin, D., and W. J. Emery, 1995: Spacecraft attitude variations of NOAA-11 inferred from AVHRR imagery. Int. J. Remote Sens., 16 , 531548.

    • Search Google Scholar
    • Export Citation
  • Benson, C. S., 1962: Stratigraphic studies in the snow and firn of Greenland ice sheet. U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) Research Rep. 70, 93 pp.

  • Bintanja, R., 1998: The contribution of snowdrift sublimation to the surface mass balance of Antarctica. Ann. Glaciol., 27 , 251259.

  • Bintanja, R., 2001: Snowdrift sublimation in a katabatic wind region of the Antarctic ice sheet. J. Appl. Meteor., 40 , 19521966.

  • Box, J. E., 2002: Survey of Greenland instrumental temperature records: 1873-2001. Int. J. Climatol., 22 , 18291847.

  • Box, J. E., 2005: Greenland [in “State of the Climate in 2004”]. Bull. Amer. Meteor. Soc., 86 , 6. 4194.

  • Box, J. E., and A. Rinke, 2003: Evaluation of Greenland ice sheet surface climate in the HIRHAM regional climate model. J. Climate, 16 , 13021319.

    • Search Google Scholar
    • Export Citation
  • Box, J. E., D. H. Bromwich, and L-S. Bai, 2004: Greenland ice sheet surface mass balance for 1991–2000: Application of Polar MM5 mesoscale model and in-situ data. J. Geophys. Res., 109 .D16105, doi:10.1029/2003JD004451.

    • Search Google Scholar
    • Export Citation
  • Box, J. E., L. Yang, J. Rogers, D. Bromwich, L-S. Bai, K. Steffen, J. C. Stroeve, and S-H. Wang, 2005: Extreme precipitation events over Greenland: Consequences to ice sheet mass balance. Preprints, Eighth Conf. on Polar Meteorology and Oceanography, San Diego, CA, Amer. Meteor. Soc., CD-ROM, 5.2.

  • Bromwich, D. H., J. Cassano, T. Klein, G. Heinemann, K. Hines, K. Steffen, and J. E. Box, 2001a: Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Mon. Wea. Rev., 129 , 22902309.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., Q. S. Chen, L. S. Bai, E. N. Cassano, and Y. Li, 2001b: Modeled precipitation variability over the Greenland Ice Sheet. J. Geophys. Res., 106 , 3389133908.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., L-S. Bai, and G. G. Bjarnason, 2005: High-resolution regional climate simulations over Iceland using Polar MM5. Mon. Wea. Rev., 133 , 35273547.

    • Search Google Scholar
    • Export Citation
  • Calanca, P., H. Gilgen, S. Ekholm, and A. Ohmura, 2000: Gridded temperature and accumulation distributions for use in cryospheric models. Ann. Glaciol., 31 , 118120.

    • Search Google Scholar
    • Export Citation
  • Cappelen, J., 2003: World weather records 1991–2000—Denmark, The Faroe Islands and Greenland. Tech. Rep. 03-34, Danish Meteorological Institute, Copenhagen, Denmark, 45 pp.

  • Cappelen, J., 2004: Yearly mean temperature for selected meteorological stations in Denmark, the Faroe Islands and Greenland: 1873–2003. Tech. Rep. 04-07, Danish Meteorological Institute, Copenhagen, Denmark, 9 pp.

  • Cassano, J., J. E. Box, D. H. Bromwich, L. Li, and K. Steffen, 2001: Verification of Polar MM5 simulations of Greenland’s atmospheric circulation. J. Geophys. Res., 106 , 3386733890.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., J. M. Gregory, P. Huybrechts, M. Kuhn, C. Lambeck, M. T. Nhuan, D. Qin, and P. L. Woodworth, 2001: Changes in sea level. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 639-694.

    • Search Google Scholar
    • Export Citation
  • Cogley, J. G., 2004: Greenland accumulation: An error model. J. Geophys. Res., 109 .D18101, doi:10.1029/2003JD004449.

  • Davis, C. H., Y. Li, J. R. McConnell, M. M. Frey, and E. Hanna, 2005: Snowfall-driven growth in east Antarctic Ice Sheet mitigates recent sea-level rise. Science, 308 , 18981901.

    • Search Google Scholar
    • Export Citation
  • Déry, S. J., and M. K. Yau, 2001: Simulation of blowing snow in the Canadian Arctic using a double-moment model. Bound.-Layer Meteor., 2 , 297316.

    • Search Google Scholar
    • Export Citation
  • Dethloff, K., and Coauthors, 2002: Recent Greenland accumulation estimated from regional climate model simulations and ice core analysis. J. Climate, 15 , 28212832.

    • Search Google Scholar
    • Export Citation
  • Dyurgerov, M. B., and J. D. Dwyer, 2001: The steepening of glacier mass balance gradients with northern hemisphere warming. Z. Gletsch. Glazialgeol., 36 , 107118.

    • Search Google Scholar
    • Export Citation
  • Ekholm, S., 1996: A full coverage, high-resolution topographic model of Greenland computed from a variety of digital elevation data. J. Geophys. Res., 101 , 2196121972.

    • Search Google Scholar
    • Export Citation
  • Greuell, W., B. Denby, R. S. W. van de Wal, and J. Oerlemans, 2001: Ten years of mass-balance measurements along a transect near Kangerlussuaq, Greenland. J. Glaciol., 47 , 157158.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., P. Huybrechts, and T. Mote, 2002: Surface mass balance of the Greenland ice sheet from climate analysis data and accumulation/runoff models. Ann. Glaciol., 35 , 6772.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., P. Huybrechts, I. Janssens, J. Cappelen, K. Steffen, and A. Stephens, 2005: Runoff and mass balance of the Greenland ice sheet: 1958–2003. J. Geophys. Res., 110 .D13108, doi:10.1029/2004JD005641.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, J. Glascoe, and M. Sato, 1999: GISS analysis of surface temperature change. J. Geophys. Res., 104 , 3099731022.

  • Jones, P. D., and M. E. Mann, 2004: Climate over past millennia. Rev. Geophys., 42 .RG2002, doi:10.1029/2003RG000143.

  • Joughin, I., W. Abdalati, and M. Fahnestock, 2004: Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature, 432 , 608610.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Key, J., C. Fowler, J. Maslanik, T. Haran, T. Scambos, and W. Emery, 2002: The Extended AVHRR Polar Pathfinder (APP-x) Product, v 1.0. Digital Media, Space Science and Engineering Center, University of Wisconsin, Madison, WI.

  • Kiilsholm, S., J. H. Christensen, K. Dethloff, and A. Rinke, 2003: Net accumulation of the Greenland ice sheet: High resolution modeling of climate changes. Geophys. Res. Lett., 30 .1485, doi:10.1029/2002GL015742.

    • Search Google Scholar
    • Export Citation
  • Konzelmann, T. M., 1994: Radiation conditions on the Greenland ice sheet, Ph.D. thesis, Zürcher Geographischen Schriften, No. 56, Verlag Geographisches Instutut ETH, Zürich, Switzerland, 122 pp.

  • Krabill, W., and Coauthors, 2004: Greenland Ice Sheet: Increased coastal thinning. Geophys. Res. Lett., 31 .L24402, doi:10.1029/2004GL021533.

    • Search Google Scholar
    • Export Citation
  • Leuliette, E., R. Nerem, and G. Mitchum, 2004: Calibration of TOPEX/Poseidon and Jason altimeter data to construct a continuous record of mean sea level change. Mar. Geod., 27 , 1–2. 7994.

    • Search Google Scholar
    • Export Citation
  • Liang, S., J. C. Stroeve, and J. E. Box, 2005: Mapping daily snow/ice shortwave broadband albedo from Moderate Resolution Imaging Spectroradiometer (MODIS): The improved direct retrieval algorithm and validation with Greenland in situ measurement. J. Geophys. Res., 110 .D10109, doi:10.1029/2004JD005493.

    • Search Google Scholar
    • Export Citation
  • McConnell, J. R., G. Lamorey, E. Hanna, E. Mosley-Thompson, R. C. Bales, D. Belle-Oudry, and J. D. Kyne, 2001: Annual net snow accumulation over southern Greenland from 1975 to 1998. J. Geophys. Res., 106 , 3382733838.

    • Search Google Scholar
    • Export Citation
  • Nghiem, S. V., K. Steffen, G. Neumann, and R. Huff, 2005: Mapping of ice layer extent and snow accumulation in the percolation zone of the Greenland ice sheet. J. Geophys. Res., 110 .F02017, doi:10.1029/2004JF000234.

    • Search Google Scholar
    • Export Citation
  • Oerlemans, J., and H. F. Vugts, 1993: A meteorological experiment in the melting zone of the Greenland ice sheet. Bull. Amer. Meteor. Soc., 74 , 355365.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., P. Calanca, M. Wild, and M. Anklin, 1999: Precipitation, accumulation, and mass balance of the Greenland ice sheet. Z. Gletsch. Glazialgeol., 35 , 120.

    • Search Google Scholar
    • Export Citation
  • Pfeffer, W. T., M. F. Meier, and T. H. Illangasekare, 1991: Retention of Greenland runoff by refreezing: Implications for projected future sea-level change. J. Geophys. Res., 96 , 2211722124.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J. W., and L. Li, 2000: Prairie and Arctic areal snow cover mass balance using a blowing snow model. J. Geophys. Res., 105 , 2661926634.

    • Search Google Scholar
    • Export Citation
  • Rao, C. R. N., and J. Chen, 1995: Inter-satellite calibration linkages for the visible channels of the Advanced Very High Resolution Radiometer on the NOAA-8, -9, and -11. Int. J. Remote Sens., 16 , 19311942.

    • Search Google Scholar
    • Export Citation
  • Reeh, N., C. Mayer, H. Miller, H. H. Thomson, and A. Weidick, 1999: Present and past climate control on fjord glaciations in Greenland: Implications for IRD-deposition in the sea. Geophys. Res. Lett., 26 , 10391042.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., A. Rivera, and G. Casassa, 2003: Contribution of the Patagonian Icefields of South America to sea level rise. Science, 302 , 434437.

    • Search Google Scholar
    • Export Citation
  • Scambos, T. A., J. A. Bohlander, C. A. Shuman, and P. Skvarca, 2004: Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett., 31 .L18402, doi:10.1029/2004GL020670.

    • Search Google Scholar
    • Export Citation
  • Steffen, K., and J. E. Box, 2001: Surface climatology of the Greenland ice sheet: Greenland Climate Network 1995–1999. J. Geophys. Res., 106 , 3395133964.

    • Search Google Scholar
    • Export Citation
  • Steffen, K., J. E. Box, and W. Abdalati, 1996: Greenland climate network: GC-Net. Glaciers, Ice Sheets, and Volcanoes: A Tribute to Mark F. Meier. CRREL Special Rep. 96-27, 98–103.

  • Steffen, K., S. V. Nghiem, R. Huff, and G. Neumann, 2004: The melt anomaly of 2002 on the Greenland ice sheet from active and passive microwave satellite observations. Geophys. Res. Lett., 31 .L20402, doi:10.1029/2004GL020444.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., J. E. Box, J. Maslanik, J. Key, and C. Fowler, 2001: Intercomparison between in situ and AVHRR Polar Pathfinder-derived surface albedo over Greenland. Remote Sens. Environ., 75 , 360374.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., J. E. Box, A. Nolin, S. Liang, C. Schaaf, and F. Gao, 2005: Accuracy assessment of the MODIS 16-day albedo product for snow: Comparisons with Greenland in situ measurements. Remote Sens. Environ., 94 , 4660.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. A. Paolino Jr., 1980: The Northern Hemisphere sea level pressure data set: Trends, errors and discontinuities. Mon. Wea. Rev., 108 , 855872.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., D. van As, C. H. Reijmer, and R. S. W. van de Wal, 2004: Assessing and improving the quality of unattended radiation observations in Antarctica. J. Atmos. Oceanic Technol., 21 , 14171432.

    • Search Google Scholar
    • Export Citation
  • van der Veen, C. J., 2002: Polar ice sheets and global sea level: How well can we predict the future? Global Planet. Change, 32 , 165194.

    • Search Google Scholar
    • Export Citation
  • Vaughan, D. G., and Coauthors, 2003: Recent rapid regional climate warming on the Antarctic Peninsula. Climate Change, 60 , 243274.

  • Wild, M., P. Calanca, S. C. Scherrer, and A. Ohmura, 2003: Effects of polar ice sheets on global sea level in high-resolution greenhouse scenarios. J. Geophys. Res., 108 .4165, doi:10.1029/ 2002JD002451.

    • Search Google Scholar
    • Export Citation
  • Zwally, H. J., W. Abdalati, T. Herring, K. Larsen, J. Saba, and K. Steffen, 2002: Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297 , 218222.

    • Search Google Scholar
    • Export Citation
  • Zweck, C., and P. Huybrechts, 2005: Modeling of the Northern Hemisphere ice sheets during the last glacial cycle and glaciological sensitivity. J. Geophys. Res., 110 .D07103, doi:10.1029/2004JD005489.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 661 294 26
PDF Downloads 346 172 10

Greenland Ice Sheet Surface Mass Balance Variability (1988–2004) from Calibrated Polar MM5 Output

Jason E. BoxPolar Meteorology Group, Byrd Polar Research Center, and Atmospheric Sciences Program, Department of Geography, The Ohio State University, Columbus, Ohio

Search for other papers by Jason E. Box in
Current site
Google Scholar
PubMed
Close
,
David H. BromwichPolar Meteorology Group, Byrd Polar Research Center, and Atmospheric Sciences Program, Department of Geography, The Ohio State University, Columbus, Ohio

Search for other papers by David H. Bromwich in
Current site
Google Scholar
PubMed
Close
,
Bruce A. VeenhuisPolar Meteorology Group, Byrd Polar Research Center, and Atmospheric Sciences Program, Department of Geography, The Ohio State University, Columbus, Ohio

Search for other papers by Bruce A. Veenhuis in
Current site
Google Scholar
PubMed
Close
,
Le-Sheng BaiPolar Meteorology Group, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio

Search for other papers by Le-Sheng Bai in
Current site
Google Scholar
PubMed
Close
,
Julienne C. StroeveNational Snow and Ice Data Center, University of Colorado, Boulder, Colorado

Search for other papers by Julienne C. Stroeve in
Current site
Google Scholar
PubMed
Close
,
Jeffrey C. RogersAtmospheric Sciences Program, Department of Geography, The Ohio State University, Columbus, Ohio

Search for other papers by Jeffrey C. Rogers in
Current site
Google Scholar
PubMed
Close
,
Konrad SteffenCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Konrad Steffen in
Current site
Google Scholar
PubMed
Close
,
T. HaranNational Snow and Ice Data Center, University of Colorado, Boulder, Colorado

Search for other papers by T. Haran in
Current site
Google Scholar
PubMed
Close
, and
Sheng-Hung WangPolar Meteorology Group, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio

Search for other papers by Sheng-Hung Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Regional climate model runs using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesocale Model modified for use in polar regions (Polar MM5), calibrated by independent in situ observations, demonstrate coherent regional patterns of Greenland ice sheet surface mass balance (SMB) change over a 17-yr period characterized by warming (1988–2004). Both accumulation and melt rates increased, partly counteracting each other for an overall negligible SMB trend. However, a 30% increase in meltwater runoff over this period suggests that the overall ice sheet mass balance has been increasingly negative, given observed meltwater-induced flow acceleration. SMB temporal variability of the whole ice sheet is best represented by ablation zone variability, suggesting that increased melting dominates over increased accumulation in a warming scenario. The melt season grew in duration over nearly the entire ablation zone by up to 40 days, 10 days on average. Accumulation area ratio decreased by 3%. Albedo reductions are apparent in five years of the Moderate Resolution Imaging Spectroradiometer (MODIS) derived data (2000–04). The Advanced Very High Resolution Radiometer (AVHRR)-derived albedo changes (1988–99) were less consistent spatially. A conservative assumption as to glacier discharge and basal melting suggests an ice sheet mass loss over this period greater than 100 km3 yr−1, framing the Greenland ice sheet as the largest single glacial contributor to recent global sea level rise. Surface mass balance uncertainty, quantified from residual random error between model and independent observations, suggests two things: 1) changes smaller than approximately 200 km3 yr−1 would not satisfy conservative statistical significance thresholds (i.e., two standard deviations) and 2) although natural variability and model uncertainty were separated in this analysis, the magnitude of each were roughly equivalent. Therefore, improvements in model accuracy and analysis of longer periods (assuming larger changes) are both needed for definitive mass balance change assessments.

Corresponding author address: Jason E. Box, Byrd Polar Research Center, The Ohio State University, 1090 Carmack Rd., Columbus, OH 43210-1002. Email: box.11@osu.edu

Abstract

Regional climate model runs using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesocale Model modified for use in polar regions (Polar MM5), calibrated by independent in situ observations, demonstrate coherent regional patterns of Greenland ice sheet surface mass balance (SMB) change over a 17-yr period characterized by warming (1988–2004). Both accumulation and melt rates increased, partly counteracting each other for an overall negligible SMB trend. However, a 30% increase in meltwater runoff over this period suggests that the overall ice sheet mass balance has been increasingly negative, given observed meltwater-induced flow acceleration. SMB temporal variability of the whole ice sheet is best represented by ablation zone variability, suggesting that increased melting dominates over increased accumulation in a warming scenario. The melt season grew in duration over nearly the entire ablation zone by up to 40 days, 10 days on average. Accumulation area ratio decreased by 3%. Albedo reductions are apparent in five years of the Moderate Resolution Imaging Spectroradiometer (MODIS) derived data (2000–04). The Advanced Very High Resolution Radiometer (AVHRR)-derived albedo changes (1988–99) were less consistent spatially. A conservative assumption as to glacier discharge and basal melting suggests an ice sheet mass loss over this period greater than 100 km3 yr−1, framing the Greenland ice sheet as the largest single glacial contributor to recent global sea level rise. Surface mass balance uncertainty, quantified from residual random error between model and independent observations, suggests two things: 1) changes smaller than approximately 200 km3 yr−1 would not satisfy conservative statistical significance thresholds (i.e., two standard deviations) and 2) although natural variability and model uncertainty were separated in this analysis, the magnitude of each were roughly equivalent. Therefore, improvements in model accuracy and analysis of longer periods (assuming larger changes) are both needed for definitive mass balance change assessments.

Corresponding author address: Jason E. Box, Byrd Polar Research Center, The Ohio State University, 1090 Carmack Rd., Columbus, OH 43210-1002. Email: box.11@osu.edu

Save