• Brubaker, K., P. A. Dirmeyer, A. Sudradjat, B. S. Levy, and F. Bernal, 2001: A 36-yr climatological description of the evaporative sources of warm-season precipitation in the Mississippi River basin. J. Hydrometeor., 2 , 537557.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part I: Seasonal and interannual variations. J. Climate, 14 , 10921111.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and L. Tan, 2001: A multi-decadal global land-surface data set of state variables and fluxes. COLA Tech. Rep. 102, 43 pp. [Available from the Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, #302, Calverton, MD 20705.].

  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108 .8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., K. C. Mo, and S. D. Schubert, 1996: The moisture budget of the central United States in spring as evaluated from the NCEP/NCAR and the NASA/DAO reanalyses. Mon. Wea. Rev., 124 , 939963.

    • Search Google Scholar
    • Export Citation
  • Huang, J., H. M. Van den Dool, and K. P. Georgarakos, 1996: Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J. Climate, 9 , 13501362.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Koster, R., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Mesinger, F., and Coauthors, 2004: NCEP North American regional reanalysis. Preprints, 15th Symp. on Global Change and Climate Variations, Seattle, WA, Amer. Meteor. Soc., CD-ROM, P1.1.

  • Mitchell, K., and Coauthors, 2004: NCEP completes 25-year North American Reanalysis: Precipitation assimilation and land surface are two hallmarks. GEWEX News, Vol. 14, No. 2, International GEWEX Project Office, Sliver Spring, MD, 9–12.

  • Ruiz-Barradas, A., and S. Nigam, 2005: Warm-season rainfall variability over the U.S. Great Plains in observations, NCEP and ERA-40 reanalyses, and NCAR and NASA atmospheric model simulations. J. Climate, 18 , 18081830.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1998: Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Climate Dyn., 14 , 213231.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 112 25 0
PDF Downloads 57 15 0

Great Plains Hydroclimate Variability: The View from North American Regional Reanalysis

Alfredo Ruiz-BarradasDepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Alfredo Ruiz-Barradas in
Current site
Google Scholar
PubMed
Close
and
Sumant NigamDepartment of Atmospheric and Oceanic Science, and the Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Sumant Nigam in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Interannual variability of warm-season rainfall over the Great Plains is analyzed using the recently released North American Regional Reanalysis (NARR). The new dataset differs from its global counterparts in the additional assimilation of precipitation and radiances. This along with the use of a more comprehensive land surface model in generation of NARR offers the prospect of obtaining improved estimates of surface hydrologic and near-surface meteorological fields.

NARR’s representation of hydroclimate is used to weigh in on the authors’ recent finding of the dominance of large-scale moisture flux convergence over evaporation in accounting for Great Plains precipitation variations. Evaporation estimates are notoriously uncertain and, while the NARR ones are not assured to be realistic, they are more constrained than those diagnosed before from inline and offline assessments.

NARR’s portrayal of warm-season hydroclimate variability corroborates the importance of remote water sources in generation of Great Plains precipitation variability and supports the authors’ claim that some state-of-the-art atmosphere/land surface models vigorously recycle precipitation, erroneously, at least in context of Great Plains interannual variability. These very models have been key to recent claims of strong coupling between soil moisture and precipitation.

Corresponding author address: Alfredo Ruiz-Barradas, University of Maryland, College Park, 3405 Computer and Space Sciences Bldg., College Park, MD 20742-2425. Email: alfredo@atmos.umd.edu

Abstract

Interannual variability of warm-season rainfall over the Great Plains is analyzed using the recently released North American Regional Reanalysis (NARR). The new dataset differs from its global counterparts in the additional assimilation of precipitation and radiances. This along with the use of a more comprehensive land surface model in generation of NARR offers the prospect of obtaining improved estimates of surface hydrologic and near-surface meteorological fields.

NARR’s representation of hydroclimate is used to weigh in on the authors’ recent finding of the dominance of large-scale moisture flux convergence over evaporation in accounting for Great Plains precipitation variations. Evaporation estimates are notoriously uncertain and, while the NARR ones are not assured to be realistic, they are more constrained than those diagnosed before from inline and offline assessments.

NARR’s portrayal of warm-season hydroclimate variability corroborates the importance of remote water sources in generation of Great Plains precipitation variability and supports the authors’ claim that some state-of-the-art atmosphere/land surface models vigorously recycle precipitation, erroneously, at least in context of Great Plains interannual variability. These very models have been key to recent claims of strong coupling between soil moisture and precipitation.

Corresponding author address: Alfredo Ruiz-Barradas, University of Maryland, College Park, 3405 Computer and Space Sciences Bldg., College Park, MD 20742-2425. Email: alfredo@atmos.umd.edu

Save