• Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., N-C. Lau, and J. D. Scott, 2004: Broadening the atmospheric bridge paradigm: ENSO teleconnections to the tropical west Pacific-Indian Oceans over the seasonal cycle and to the North Pacific in summer. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 85–104.

  • Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128 , 917946.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and S. D. Schubert, 2001: Precipitation recycling in the GEOS-1 data assimilation system over the central United States. J. Hydrometeor., 2 , 2635.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and S. D. Schubert, 2002: Water vapor tracers as diagnostics of the regional hydrologic cycle. J. Hydrometeor., 3 , 149165.

    • Search Google Scholar
    • Export Citation
  • Chen, A. A., and M. A. Taylor, 2002: Investigating the link between early season Caribbean rainfall and the El Niño+1 year. Int. J. Climatol., 22 , 87106.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their infleunce on the remote tropical climate. J. Climate, 15 , 26162631.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., Y. Kushnir, and A. Giannini, 2002: Deconstructing Atlantic Intertropical Convergence Zone variability: Influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J. Geophys. Res., 107 .4004, doi:10.1029/2000JD000307.

    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., M. P. Hoerling, and J. K. Eischeid, 2001: ENSO variability, teleconnections and climate change. Int. J. Climatol., 21 , 18451862.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., and M. Latif, 2000: Interannual to decadal variability in the tropical Atlantic. J. Climate, 13 , 777792.

  • Enfield, D. B., 1996: Relationships of inter-American rainfall to tropical Atlantic and Pacific SST variability. Geophys. Res. Lett., 23 , 33053308.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J. Geophys. Res., 102 , 929945.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and E. J. Alfaro, 1999: The dependence of Caribbean rainfall on the interaction of the tropical Atlantic and Pacific Oceans. J. Climate, 12 , 20932103.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and A. M. Mestas-Nuñez, 1999: Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns. J. Climate, 12 , 27192733.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, D. A. Mayer, and L. Cid-Serrano, 1999: How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? J. Geophys. Res., 104 , 78417848.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28 , 20772080.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures, 1901–1985. Nature, 320 , 602607.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., Y. Kushnir, and M. A. Cane, 2000: Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Climate, 13 , 297311.

    • Search Google Scholar
    • Export Citation
  • Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293 , 474479.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origins of tropical disturbances and storms. Mon. Wea. Rev., 96 , 669700.

  • Gray, W. M., 1979: Hurricanes: Their formation, structure, and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112 , 16491668.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1990: Strong association between West African rainfall and U.S. landfall of intense hurricanes. Science, 249 , 12511256.

  • Gray, W. M., J. D. Sheaffer, and C. W. Landsea, 1997: Climate trends associated with multidecadal variability of Atlantic hurricane activity. Hurricanes, Climate and Socioeconomic Impacts, H. F. Diaz and R. S. Pulwarty, Eds., Springer, 15–53.

    • Search Google Scholar
    • Export Citation
  • Houghton, R. W., and Y. M. Tourre, 1992: Characteristics of low-frequency sea surface temperature fluctuations in the tropical Atlantic. J. Climate, 5 , 765771.

    • Search Google Scholar
    • Export Citation
  • Hu, Q., and S. Feng, 2001: Climate role of the southerly flow from the Gulf of Mexico in interannual variations in summer rainfall in the central United States. J. Climate, 14 , 31563170.

    • Search Google Scholar
    • Export Citation
  • Jarvinen, B. R., C. J. Neumann, and M. A. S. Davis, 1984: A tropical cyclone data tape for the North Atlantic Basin, 1886–1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS NHC 22, Coral Gables, FL, 21 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288 , 19841986.

  • Knaff, J. A., 1997: Implications of summertime sea level pressure anomalies in the tropical Atlantic region. J. Climate, 10 , 789804.

  • Landsea, C. W., R. A. Pielke, A. M. Mestas-Nunez, and J. A. Knaff, 1999: Atlantic basin hurricanes: Indices of climatic changes. Climate Change, 42 , 89129.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and Coauthors, 2004: The Atlantic hurricane database re-analysis project: Documentation for the 1851–1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present and Future, R. J. Murname and K.-B. Liu, Eds., Columbia University Press, 177–221.

    • Search Google Scholar
    • Export Citation
  • Magaña, V., J. A. Amador, and S. Medina, 1999: The midsummer drought over Mexico and central America. J. Climate, 12 , 15771588.

  • Mehta, V. M., 1998: Variability of the tropical ocean surface temperatures at decadal multidecadal timescales. Part I: The Atlantic Ocean. J. Climate, 11 , 23512375.

    • Search Google Scholar
    • Export Citation
  • Melice, J-L., and J. Servain, 2003: The tropical Atlantic meridional SST gradient index and its relationships with the SOI, NAO and Southern Ocean. Climate Dyn., 20 , 447464.

    • Search Google Scholar
    • Export Citation
  • Mestas-Nuñez, A. M., and D. B. Enfield, 1999: Rotated global modes of non-ENSO sea surface temperature variability. J. Climate, 12 , 27342746.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1996: Large-scale atmospheric water vapor transport as evaluated from the NCEP/NCAR and the NASA/DOA reanalyses. J. Climate, 9 , 15311545.

    • Search Google Scholar
    • Export Citation
  • Molinari, R. L., and A. Mestas-Nunez, 2003: North Atlantic decadal variability and the formation of tropical storms and hurricanes. Geophys. Res. Lett., 30 .1541, doi:10.1029/2002GL016462.

    • Search Google Scholar
    • Export Citation
  • Moura, A. D., and J. Shukla, 1981: On the dynamics of droughts in northeast Brazil: Observations, theory and numerical experiments with a general circulation model. J. Atmos. Sci., 38 , 26532675.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., C. Chou, and H. Su, 2003: Tropical drought regions in global warming and El Niño teleconnections. Geophys. Res. Lett., 30 .2275, doi:10.1029/2003GL018625.

    • Search Google Scholar
    • Export Citation
  • Neumann, C. J., B. R. Jarvinen, C. J. McAdie, and G. R. Hammer, 1999: Tropical cyclones of the North Atlantic Ocean, 1871–1999. Historical Climatology Series 6-2, NOAA/NWS/NESDIS, 206 pp.

  • Philander, S. G. H., D. Gu, G. Lambert, T. Li, D. Halpern, N-C. Lau, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9 , 29582972.

    • Search Google Scholar
    • Export Citation
  • Raper, S., 1992: Observational data on the relationships between climate change and the frequency and magnitude of severe tropical storms. Climate and Sea Level Change: Observations, Projections and Implications, R. A. Warrick, E. M. Barrow, and T. M. L. Wigley, Eds., Cambridge University Press, 192–212.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and J. M. Wallace, 1983: Meteorological aspects of the El Niño/Southern Oscillation. Science, 222 , 11951202.

  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115 , 16061626.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2 , 268284.

    • Search Google Scholar
    • Export Citation
  • Saunders, M. A., and A. R. Harris, 1997: Statistical evidence links exceptional 1995 Atlantic hurricane season to record sea warming. Geophys. Res. Lett., 24 , 12551258.

    • Search Google Scholar
    • Export Citation
  • Sciremammano, F., 1979: A suggestion for the presentation of correlations and their significance levels. J. Phys. Oceanogr., 9 , 12731276.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and S. B. Goldenberg, 1998: Atlantic sea surface temperatures and tropical cyclone formation. J. Climate, 11 , 578590.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128 , 13661383.

  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17 , 24662477.

  • Spence, J. M., M. A. Taylor, and A. Chen, 2004: The effect of concurrent sea-surface temperature anomalies in the tropical Pacific and Atlantic on Caribbean rainfall. Int. J. Climatol., 24 , 15311541.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., D. B. Enfield, and A. A. Chen, 2002: Influence of the tropical Atlantic versus the tropical Pacific on Caribbean rainfall. J. Geophys. Res., 107 .3127, doi:10.1029/2001JC001097.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2002: Atlantic climate variability and its associated atmospheric circulation cells. J. Climate, 15 , 15161536.

  • Wang, C., 2005: ENSO, Atlantic climate variability, and the Walker and Hadley circulations. The Hadley Circulation: Past, Present, and Future, H. F. Diaz and R. S. Bradley, Eds., Kluwer Academic, 173–202.

    • Search Google Scholar
    • Export Citation
  • Wang, C., and D. B. Enfield, 2001: The tropical Western Hemisphere warm pool. Geophys. Res. Lett., 28 , 16351638.

  • Wang, C., and D. B. Enfield, 2003: A further study of the tropical Western Hemisphere warm pool. J. Climate, 16 , 14761493.

  • Wang, Y., S-P. Xie, H. Xu, and B. Wang, 2004: Regional model simulations of marine boundary layer clouds over the southeast Pacific off South America. Part I: Control experiment. Mon. Wea. Rev., 132 , 274296.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and R. Lukas, 1992: TOGA COARE: The Coupled Ocean–Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73 , 13771416.

    • Search Google Scholar
    • Export Citation
  • Wonnacott, T. H., and R. J. Wonnacott, 1986: Regression: A Second Course in Statistics. Robert E. Krieger Publishing Company, 556 pp.

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth’s Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 121–142.

    • Search Google Scholar
    • Export Citation
  • Yin, X., A. Gruber, and P. Arkin, 2004: Comparison of the GPCP and CMAP merged gauge–satellite monthly precipitation products for the period 1979–2001. J. Hydrometeor., 5 , 12071222.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 721 275 26
PDF Downloads 528 196 20

Influences of the Atlantic Warm Pool on Western Hemisphere Summer Rainfall and Atlantic Hurricanes

Chunzai WangPhysical Oceanography Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Chunzai Wang in
Current site
Google Scholar
PubMed
Close
,
David B. EnfieldPhysical Oceanography Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by David B. Enfield in
Current site
Google Scholar
PubMed
Close
,
Sang-ki LeeCooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

Search for other papers by Sang-ki Lee in
Current site
Google Scholar
PubMed
Close
, and
Christopher W. LandseaNOAA/National Hurricane Center, Miami, Florida

Search for other papers by Christopher W. Landsea in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Atlantic warm pool (AWP) of water warmer than 28.5°C comprises the Gulf of Mexico, the Caribbean Sea, and the western tropical North Atlantic (TNA). The AWP reaches its maximum size around September, with large AWPs being almost 3 times larger than small ones. Although ENSO teleconnections are influential on the AWP, about two-thirds of the large and small AWP variability appears unrelated to ENSO. The AWP is usually geographically different from the TNA; however, the AWP size is correlated with the TNA SST anomalies. During August to October, large AWPs and warm TNA are associated with increased rainfall over the Caribbean, Mexico, the eastern subtropical Atlantic, and the southeast Pacific, and decreased rainfall in the northwest United States, Great Plains, and eastern South America. In particular, rainfall in the Caribbean, Central America, and eastern South America from August to October is mainly related to the size of the AWP. Large (small) AWPs and warm (cold) TNA correspond to a weakening (strengthening) of the northward surface winds from the AWP to the Great Plains that disfavors (favors) moisture transport for rainfall over the Great Plains. On the other hand, large (small) AWPs and warm (cold) TNA strengthen (weaken) the summer regional Atlantic Hadley circulation that emanates from the warm pool region into the southeast Pacific, changing the subsidence over the southeast Pacific and thus the stratus cloud and drizzle there. The large AWP, associated with a decrease in sea level pressure and an increase in atmospheric convection and cloudiness, corresponds to a weak tropospheric vertical wind shear and a deep warm upper ocean, and thus increases Atlantic hurricane activity.

Corresponding author address: Dr. Chunzai Wang, Physical Oceanography Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, 4301 Rickenbacker Causeway, Miami, FL 33149. Email: Chunzai.Wang@noaa.gov

Abstract

The Atlantic warm pool (AWP) of water warmer than 28.5°C comprises the Gulf of Mexico, the Caribbean Sea, and the western tropical North Atlantic (TNA). The AWP reaches its maximum size around September, with large AWPs being almost 3 times larger than small ones. Although ENSO teleconnections are influential on the AWP, about two-thirds of the large and small AWP variability appears unrelated to ENSO. The AWP is usually geographically different from the TNA; however, the AWP size is correlated with the TNA SST anomalies. During August to October, large AWPs and warm TNA are associated with increased rainfall over the Caribbean, Mexico, the eastern subtropical Atlantic, and the southeast Pacific, and decreased rainfall in the northwest United States, Great Plains, and eastern South America. In particular, rainfall in the Caribbean, Central America, and eastern South America from August to October is mainly related to the size of the AWP. Large (small) AWPs and warm (cold) TNA correspond to a weakening (strengthening) of the northward surface winds from the AWP to the Great Plains that disfavors (favors) moisture transport for rainfall over the Great Plains. On the other hand, large (small) AWPs and warm (cold) TNA strengthen (weaken) the summer regional Atlantic Hadley circulation that emanates from the warm pool region into the southeast Pacific, changing the subsidence over the southeast Pacific and thus the stratus cloud and drizzle there. The large AWP, associated with a decrease in sea level pressure and an increase in atmospheric convection and cloudiness, corresponds to a weak tropospheric vertical wind shear and a deep warm upper ocean, and thus increases Atlantic hurricane activity.

Corresponding author address: Dr. Chunzai Wang, Physical Oceanography Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, 4301 Rickenbacker Causeway, Miami, FL 33149. Email: Chunzai.Wang@noaa.gov

Save