• Ammann, C. M., G. A. Meehl, W. M. Washington, and C. Zender, 2003: A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys. Res. Lett., 30 .1657, doi:10.1029/2003GL016875.

    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., G. A. Meehl, and A. M. Moore, 2002: Interdecadal modulation of Australian rainfall. Climate Dyn., 18 , 519531.

  • Bonan, G. B., 1998: The land surface climatology of the NCAR Land Surface Model coupled to the NCAR Community Climate Model. J. Climate, 11 , 13071326.

    • Search Google Scholar
    • Export Citation
  • Cai, W., P. H. Whetton, and D. J. Karoly, 2003: The response of the Antarctic Oscillation to increasing and stabilized atmospheric CO2. J. Climate, 16 , 15251538.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 525–582.

    • Search Google Scholar
    • Export Citation
  • Dai, A., T. M. L. Wigley, B. A. Boville, J. T. Kiehl, and L. E. Buja, 2001: Climates of the twentieth and twenty-first centuries simulated by the NCAR Climate System Model. J. Climate, 14 , 485519.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., G. J. Boer, and G. M. Flato, 1999: The Artic and Antarctic Oscillations and their projected changes under global warming. Geophys. Res. Lett., 26 , 16011604.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., and D. W. J. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302 , 273275.

  • Gong, D., and S. Wang, 1999: Definition of Antarctic oscillation index. Geophys. Res. Lett., 26 , 459462.

  • Hartmann, D. L., J. M. Wallace, V. Limpasuvan, D. W. J. Thompson, and J. R. Holton, 2000: Can ozone depletion and global warming interact to produce rapid climate change? Proc. Natl. Acad. Sci. USA, 97 , 14121417.

    • Search Google Scholar
    • Export Citation
  • Hines, K. M., D. H. Bromwich, and G. J. Marshall, 2000: Artificial surface pressure trends in the NCEP–NCAR reanalysis over the Southern Ocean and Antarctica. J. Climate, 13 , 39403952.

    • Search Google Scholar
    • Export Citation
  • Hoyt, D. V., and K. H. Schatten, 1993: A discussion of plausible solar irradiance variations, 1700-1992. J. Geophys. Res., 98 , 1889518906.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and H. van Loon, 1994: A modulation of the atmospheric annual cycle in the Southern Hemisphere. Tellus, 46A , 325338.

  • Kidson, J. W., 1988: Indices of the Southern Hemisphere zonal wind. J. Climate, 1 , 183194.

  • Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311178.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., T. L. Schneider, R. W. Portmann, and S. Solomon, 1999: Climate forcing due to tropospheric and stratospheric ozone. J. Geophys. Res., 104 , 3123931254.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14 , 22382249.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26 , 31333136.

  • Marshall, G. J., 2003: Trends in the Southern Annular Mode from observations and reanalyses. J. Climate, 16 , 41344143.

  • Marshall, G. J., P. A. Stott, J. Turner, W. M. Connolley, J. C. King, and T. A. Lachlan-Cope, 2004: Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys. Res. Lett., 31 .L14205, doi:10.1029/2004GL019952.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. W. Hurrell, and H. van Loon, 1998: A modulation of the mechanism of the semiannual oscillation in the Southern Hemisphere. Tellus, 50A , 442450.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., P. Gent, J. M. Arblaster, B. Otto-Bliesner, E. Brady, and A. Craig, 2001: Factors that affect amplitude of El Nino in global coupled climate models. Climate Dyn., 17 , 515526.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, T. M. L. Wigley, J. M. Arblaster, and A. Dai, 2003: Solar and greenhouse gas forcing and climate response in the twentieth century. J. Climate, 16 , 426444.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, C. Ammann, J. M. Arblaster, T. M. L. Wigley, and C. Tebaldi, 2004: Combinations of natural and anthropogenic forcings and twentieth century climate. J. Climate, 17 , 37213727.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., D. J. Karoly, G. C. Hegerl, F. W. Zweirs, M. R. Allen, and J. Marengo, 2001: Detection of climate change and attribution of causes. Climate Change 2001: The Scientific Basis, J. T. Houghton, Eds., Cambridge University Press, 697–731.

    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., 2004: A zonal wave 3 index for the Southern Hemisphere. Geophys. Res. Lett., 31 .L23212, doi:10.1029/2004GL020365.

  • Rauthe, M., A. Hense, and H. Paeth, 2004: A model intercomparison study of climate change signals in extratropical circulation. Int. J. Climatol., 24 , 643662.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., and H. van Loon, 1982: Spatial variability of sea level pressure and 500mb height anomalies over the Southern Hemisphere. Mon. Wea. Rev., 110 , 13751392.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., and G. A. Schmidt, 2004: Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys. Res. Lett., 31 .L18209, doi:10.1029/2004GL020724.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., S. Kortas, and B. Meltz, 1995: Curvilinear coordinates for global ocean models. Los Alamos National Laboratory Rep. LA-UR-95-1146, 38 pp.

  • Stott, P. A., S. F. B. Tett, G. S. Jones, M. R. Allen, J. F. B. Mitchell, and G. J. Jenkins, 2000: External control of 20th century temperature by natural and anthropogenic forcings. Science, 290 , 21332137.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296 , 895899.

  • van Loon, H., 1972: Pressure in the Southern Hemisphere. Meteorology of the Southern Hemisphere, Meteor. Monogr., No. 49, Amer. Meteor. Soc., 59–86.

    • Search Google Scholar
    • Export Citation
  • van Loon, H., J. W. Kidson, and A. B. Mullan, 1993: Decadal variation of the annual cycle in the Australian dataset. J. Climate, 6 , 12271231.

    • Search Google Scholar
    • Export Citation
  • Washington, W. M., and Coauthors, 2000: Parallel Climate Model (PCM) control and transient simulations. Climate Dyn., 16 , 755774.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4416 3533 36
PDF Downloads 1240 571 29

Contributions of External Forcings to Southern Annular Mode Trends

Julie M. ArblasterNational Center for Atmospheric Research,* Boulder, Colorado, and Bureau of Meteorology Research Centre, Melbourne, Victoria, Australia

Search for other papers by Julie M. Arblaster in
Current site
Google Scholar
PubMed
Close
and
Gerald A. MeehlNational Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Gerald A. Meehl in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An observed trend in the Southern Hemisphere annular mode (SAM) during recent decades has involved an intensification of the polar vortex. The source of this trend is a matter of scientific debate with stratospheric ozone losses, greenhouse gas increases, and natural variability all being possible contenders. Because it is difficult to separate the contribution of various external forcings to the observed trend, a state-of-the-art global coupled model is utilized here. Ensembles of twentieth-century simulations forced with the observed time series of greenhouse gases, tropospheric and stratospheric ozone, sulfate aerosols, volcanic aerosols, solar variability, and various combinations of these are used to examine the annular mode trends in comparison to observations, in an attempt to isolate the response of the climate system to each individual forcing. It is found that ozone changes are the biggest contributor to the observed summertime intensification of the southern polar vortex in the second half of the twentieth century, with increases of greenhouse gases also being a necessary factor in the reproduction of the observed trends at the surface. Although stratospheric ozone losses are expected to stabilize and eventually recover to preindustrial levels over the course of the twenty-first century, these results show that increasing greenhouse gases will continue to intensify the polar vortex throughout the twenty-first century, but that radiative forcing will cause widespread temperature increases over the entire Southern Hemisphere.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Julie Arblaster, Bureau of Meteorology Research Centre, GPO Box 1289, Melbourne VIC 3001, Australia. Email: jma@ucar.edu

Abstract

An observed trend in the Southern Hemisphere annular mode (SAM) during recent decades has involved an intensification of the polar vortex. The source of this trend is a matter of scientific debate with stratospheric ozone losses, greenhouse gas increases, and natural variability all being possible contenders. Because it is difficult to separate the contribution of various external forcings to the observed trend, a state-of-the-art global coupled model is utilized here. Ensembles of twentieth-century simulations forced with the observed time series of greenhouse gases, tropospheric and stratospheric ozone, sulfate aerosols, volcanic aerosols, solar variability, and various combinations of these are used to examine the annular mode trends in comparison to observations, in an attempt to isolate the response of the climate system to each individual forcing. It is found that ozone changes are the biggest contributor to the observed summertime intensification of the southern polar vortex in the second half of the twentieth century, with increases of greenhouse gases also being a necessary factor in the reproduction of the observed trends at the surface. Although stratospheric ozone losses are expected to stabilize and eventually recover to preindustrial levels over the course of the twenty-first century, these results show that increasing greenhouse gases will continue to intensify the polar vortex throughout the twenty-first century, but that radiative forcing will cause widespread temperature increases over the entire Southern Hemisphere.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Julie Arblaster, Bureau of Meteorology Research Centre, GPO Box 1289, Melbourne VIC 3001, Australia. Email: jma@ucar.edu

Save