Emission-Induced Nonlinearities in the Global Aerosol System: Results from the ECHAM5-HAM Aerosol-Climate Model

Philip Stier Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Philip Stier in
Current site
Google Scholar
PubMed
Close
,
Johann Feichter Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Johann Feichter in
Current site
Google Scholar
PubMed
Close
,
Silvia Kloster Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Silvia Kloster in
Current site
Google Scholar
PubMed
Close
,
Elisabetta Vignati Institute for the Environment and Sustainability, European Commission Joint Research Centre, Ispra, Italy

Search for other papers by Elisabetta Vignati in
Current site
Google Scholar
PubMed
Close
, and
Julian Wilson Institute for the Environment and Sustainability, European Commission Joint Research Centre, Ispra, Italy

Search for other papers by Julian Wilson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In a series of simulations with the global ECHAM5-HAM aerosol-climate model, the response to changes in anthropogenic emissions is analyzed. Traditionally, additivity is assumed in the assessment of the aerosol climate impact, as the underlying bulk aerosol models are largely constrained to linearity. The microphysical aerosol module HAM establishes degrees of freedom for nonlinear responses of the aerosol system. In this study’s results, aerosol column mass burdens respond nonlinearly to changes in anthropogenic emissions, manifested in alterations of the aerosol lifetimes. Specific emission changes induce modifications of aerosol cycles with unaltered emissions, indicating a microphysical coupling of the aerosol cycles. Anthropogenic carbonaceous emissions disproportionately contribute to the accumulation mode numbers close to the source regions. In contrast, anthropogenic sulfuric emissions less than proportionally contribute to the accumulation mode numbers close to the source regions and disproportionately contribute in remote regions. The additivity of the aerosol system is analyzed by comparing the changes from a simulation with emission changes for several compounds with the sum of changes of single simulations, in each of which one of the emission changes was introduced. Close to the anthropogenic source regions, deviations from additivity are found at up to 30% and 15% for the accumulation mode number burden and aerosol optical thickness, respectively. These results challenge the traditional approach of assessing the climate impact of aerosols separately for each component and demand for integrated assessments and emission strategies.

* Current affiliation: California Institute of Technology, Pasadena, California

Corresponding author address: Philip Stier, California Institute of Technology, 1200 E. California Blvd., Pasadean, CA 91125. Email: philip.stier@caltech.edu

Abstract

In a series of simulations with the global ECHAM5-HAM aerosol-climate model, the response to changes in anthropogenic emissions is analyzed. Traditionally, additivity is assumed in the assessment of the aerosol climate impact, as the underlying bulk aerosol models are largely constrained to linearity. The microphysical aerosol module HAM establishes degrees of freedom for nonlinear responses of the aerosol system. In this study’s results, aerosol column mass burdens respond nonlinearly to changes in anthropogenic emissions, manifested in alterations of the aerosol lifetimes. Specific emission changes induce modifications of aerosol cycles with unaltered emissions, indicating a microphysical coupling of the aerosol cycles. Anthropogenic carbonaceous emissions disproportionately contribute to the accumulation mode numbers close to the source regions. In contrast, anthropogenic sulfuric emissions less than proportionally contribute to the accumulation mode numbers close to the source regions and disproportionately contribute in remote regions. The additivity of the aerosol system is analyzed by comparing the changes from a simulation with emission changes for several compounds with the sum of changes of single simulations, in each of which one of the emission changes was introduced. Close to the anthropogenic source regions, deviations from additivity are found at up to 30% and 15% for the accumulation mode number burden and aerosol optical thickness, respectively. These results challenge the traditional approach of assessing the climate impact of aerosols separately for each component and demand for integrated assessments and emission strategies.

* Current affiliation: California Institute of Technology, Pasadena, California

Corresponding author address: Philip Stier, California Institute of Technology, 1200 E. California Blvd., Pasadean, CA 91125. Email: philip.stier@caltech.edu

Save
  • Adams, P. J. and J. H. Seinfeld, 2002: Predicting global aerosol size distributions in general circulation models. J. Geophys. Res., 107.4370, doi:10.1029/2001JD001010.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245:12271230.

  • Andreae, M. and P. Crutzen, 1997: Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science, 276:10521058.

    • Search Google Scholar
    • Export Citation
  • Ångström, A., 1962: Atmospheric turbidity, global illumination and planetary albedo of the earth. Tellus, 14:435450.

  • Bates, T. S., B. J. Huebert, J. L. Gras, F. B. Griffiths, and P. A. Durkee, 1998: International global atmospheric chemistry (IGAC) project’s first aerosol characterisation experiment (ACE 1): Overview. J. Geophys. Res., 103:1629716318.

    • Search Google Scholar
    • Export Citation
  • Charlson, R., J. Lovelock, M. Andreae, and S. Warren, 1987: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326:655661.

    • Search Google Scholar
    • Export Citation
  • Chin, M., R. B. Rood, S. Lin, J. Müller, and A. M. Thompson, 2000: Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. J. Geophys. Res., 105:2467124688.

    • Search Google Scholar
    • Export Citation
  • Chin, M., Coauthors 2002: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J. Atmos. Sci., 59:461483.

    • Search Google Scholar
    • Export Citation
  • Chuang, C. and J. Penner, 1995: Effects of anthropogenic sulfate on cloud drop nucleation and optical-properties. Tellus, 47B:566577.

    • Search Google Scholar
    • Export Citation
  • Chuang, C., J. Penner, K. Taylor, A. Grossman, and J. Walton, 1997: An assessment of the radiative effects of anthropogenic sulfate. J. Geophys. Res., 102:37613778.

    • Search Google Scholar
    • Export Citation
  • Cooke, W. F. and J. J. N. Wilson, 1996: A global black carbon aerosol model. J. Geophys. Res., 101:1939519410.

  • Cooke, W. F., C. Liousse, H. Cachier, and J. Feichter, 1999: Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J. Geophys. Res., 104:2213722162.

    • Search Google Scholar
    • Export Citation
  • Crutzen, P., 1996: The role of particulate matter in ozone photochemistry. Nucleation of Atmospheric Aerosols, M. Kulmala and P. E. Wagner, Eds., Elsevier, 268–270.

    • Search Google Scholar
    • Export Citation
  • Dentener, F., Coauthors 2006: Emissions of primary aerosol and precursor gases in the years 2000 and 1750, prescribed data-sets for AeroCom. Atmos. Chem. Phys. Discuss., 6:27032763.

    • Search Google Scholar
    • Export Citation
  • Dockery, D. W., A. C. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, and F. E. Speizer, 1993: An association between air pollution and mortality in six U.S. cities. New England J. Med., 329:17531759.

    • Search Google Scholar
    • Export Citation
  • EC 1999: Directive 199/30ec relating to limit values for sulphur dioxide, oxides of nitrogen, particulate matter and lead in air. J. Eur. Commun., L163:4160.

    • Search Google Scholar
    • Export Citation
  • Emmons, L. K., Coauthors 2003: Budget of tropospheric ozone during TOPSE from two chemical transport models. J. Geophys. Res., 108.8372, doi:10.1029/2002JD002665.

    • Search Google Scholar
    • Export Citation
  • Feichter, J., E. Kjellström, H. Rodhe, F. Dentener, J. Lelieveld, and G-J. Roelofs, 1996: Simulation of the tropospheric sulfur cycle in a global climate model. Atmos. Environ., 30:16931707.

    • Search Google Scholar
    • Export Citation
  • Feichter, J., E. Roeckner, U. Lohmann, and B. Liepert, 2004: Nonlinear aspects of the climate response to greenhouse gas and aerosol forcing. J. Climate, 17:23842398.

    • Search Google Scholar
    • Export Citation
  • Fouquart, Y. and B. Bonnel, 1980: Computations of solar heating of the earth’s atmosphere: A new parameterization. Beitr. Phys. Atmos., 53:3562.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., R. C. Easter, J. Hudson, and F-M. Brèon, 2001a: Evaluation of aerosol indirect radiative forcing in MIRAGE. J. Geophys. Res., 106:53175334.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., N. Laulainen, R. Easter, R. Wagener, S. Nemesure, E. Chapman, and Y. Z. R. Leung, 2001b: Evaluation of aerosol direct radiative forcing in MIRAGE. J. Geophys. Res., 106:52955316.

    • Search Google Scholar
    • Export Citation
  • Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S-J. Lin, 2001: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res., 106:2025520274.

    • Search Google Scholar
    • Export Citation
  • Graßl, H., 1975: Albedo reduction and radiative heating of clouds by absorbing aerosol particles. Contrib. Atmos. Phys., 48:199210.

  • Graf, H-F., J. Feichter, and B. Langmann, 1997: Volcanic sulfur emissions: Estimates of source strength and its contribution to the global sulfate distribution. J. Geophys. Res., 102:1072710738.

    • Search Google Scholar
    • Export Citation
  • Guelle, W., M. Schulz, Y. Balkanski, and F. Dentener, 2001: Influence of the source formulation on modeling the atmospheric global distribution of sea salt aerosol. J. Geophys. Res., 106:2750927524.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E. and L. Nazarenko, 2004: Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci. USA, 101.doi:10.1073/pnas.2237157100.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102:68316864.

  • Haywood, J. M., D. L. Roberts, A. Slingo, J. M. Edwards, and K. P. Shine, 1997: General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol. J. Climate, 10:15621577.

    • Search Google Scholar
    • Export Citation
  • Heintzenberg, J., Coauthors 2003: Tropospheric aerosols. Atmospheric Chemistry in a Changing World: An Integration and Synthesis of a Decade of Tropospheric Chemistry Research, G. P. Brasseur, R. G. Prinn, and A. P. Pszenny, Eds., Global Change—The IGBP Series, Springer, 125–156.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Jeuken, A. B. M., P. C. Siegmund, L. C. Heijboer, J. Feichter, and L. Bengtsson, 1996: On the potential of assimilating meteorological analyses in a global climate model for the purpose of model validation. J. Geophys. Res., 101:1693916950.

    • Search Google Scholar
    • Export Citation
  • Johnson, K., R. Gordon, and K. Coale, 1997: What controls dissolved iron concentrations in the world ocean? Mar. Chem., 57:137161.

  • Kettle, A. and M. Andreae, 2000: Flux of the dimethylsulfide from the oceans: A comparison of updated data sets and flux models. J. Geophys. Res., 105:2679326808.

    • Search Google Scholar
    • Export Citation
  • Kinne, S., Coauthors 2005: An AEROCOM initial assessment—Optical properties in aerosol component modules of global models. Atmos. Chem. Phys. Discuss., 5:82858330.

    • Search Google Scholar
    • Export Citation
  • Kohfeld, K. E. and S. P. Harrison, 2001: DIRTMAP: The geological record of dust. Earth-Sci. Rev., 54:81114.

  • Langner, J. and H. Rhode, 1991: A global three-dimensional model of the global sulfur cycle. J. Atmos. Chem., 13:225263.

  • Liepert, B. G., J. Feichter, U. Lohmann, and E. Roeckner, 2004: Can aerosols spin down the water cycle in a warmer and moister world? Geophys. Res. Lett., 31.L06207, doi:10.1029/2003GL019060.

    • Search Google Scholar
    • Export Citation
  • Lin, S. J. and R. B. Rood, 1996: Multidimensional flux form semi-Lagrangian transport. Mon. Wea. Rev., 124:20462068.

  • Liousse, C., J. E. Penner, C. Chuang, J. J. Walton, H. Eddleman, and H. Cachier, 1996: A global three-dimensional model study of carbonaceous aerosols. J. Geophys. Res., 101:1941119432.

    • Search Google Scholar
    • Export Citation
  • Lippmann, M., 2000: Association of particulate matter components with daily mortality and morbidity in urban populations. HEI Res. Rep. 95, Health Effects Institute, Boston, MA, 84 pp. [Available online at http://www.healtheffects.org.].

  • Lohmann, U., 2002: A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett., 29.1052, doi:10.1029/2001GL014357.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U. and E. Roeckner, 1996: Design and performance of a new cloud microphysics scheme developed for the ECHAM4 general circulation model. Climate Dyn., 12:557572.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., J. Feichter, C. C. Chuang, and J. E. Penner, 1999: Predicting the number of cloud droplets in the ECHAM-GCM. J. Geophys. Res., 104:91699198.

    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5:91127.

    • Search Google Scholar
    • Export Citation
  • Mayol-Bracero, M-O., Coauthors 2002: Water-soluble organic compounds in biomass burning aerosols over Amazonia 2. Apportionment of the chemical composition and importance of the polyacidic fraction. J. Geophys. Res., 107.8091, doi:10.1029/2001JD000522.

    • Search Google Scholar
    • Export Citation
  • McCormic, R. A. and J. H. Ludwig, 1967: Climate modifications by atmospheric aerosols. Science, 156:13581359.

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102:1666316682.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J-J., S. A. Clough, E. J. Mlawer, and M. J. Iacono, 1998: Impact of a validated radiative transfer scheme, RRTM, on the ECMWF model climate and 10-day forecasts. ECMWF Tech. Memo. 252, Reading, United Kingdom, 48 pp.

  • Murphy, D. M., D. S. Thomson, A. M. Middlebrook, and M. E. Schein, 1998: In situ single-particle characterization at Cape Grim. J. Geophys. Res., 103:1648516491.

    • Search Google Scholar
    • Export Citation
  • Nenes, A., S. N. Pandis, and C. Pilinis, 1998: ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem., 4:123152.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Tech. Memo. 206, Reading, United Kingdom, 42 pp.

  • Penner, J. E., Coauthors 2001: Aerosols, their direct and indirect effects. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 298–248.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294:21192124.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., M. C. Barth, J. T. Kiehl, S. E. Schwartz, and C. M. Benkovitz, 2000: A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric Research Community Climate Model. J. Geophys. Res., 105:13671386.

    • Search Google Scholar
    • Export Citation
  • Ravishankara, A. R., 1997: Heterogeneous and multiphase chemistry in the troposphere. Science, 276:10581066.

  • Roderick, M. L. and D. Farquhar, 2002: The cause of decreased pan evaporation over the past 50 years. Science, 298:14101411.

  • Roeckner, E., Coauthors 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Rep. 349, Max Planck Institute for Meteorology, Hamburg, Germany, 127 pp. [Available online at http://www.mpimet.mpg.de.].

  • Roeckner, E., Coauthors 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19:37713791.

    • Search Google Scholar
    • Export Citation
  • Saarnak, C. F., 2001: A shift from natural to human-driven fire regime: Implications for trace-gas emissions. Holocene, 11:373375.

  • Schulz, M., G. de Leeuw, and Y. Balkanski, 2004: Sea-salt aerosol source functions and emissions. Emission of Atmospheric Trace Compounds, C. Granier, P. Artaxo, and C. E. Reeves, Eds., Kluwer, 333–359.

    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., Coauthors 2004: ACE-ASIA: Regional climatic and atmospheric chemical effects of Asian dust and pollution. Bull. Amer. Meteor. Soc., 85:367380.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J. and J. K. Gibson, 2000: The ERA-40 project plan. ERA-40 Project Report Series 1, ECMWF, Reading, United Kingdom, 63 pp.

  • Stier, P., Coauthors 2005: The aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys., 5:11251165.

  • Tegen, I. and A. A. Lacis, 1996: Modeling the particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res., 101:1923719244.

    • Search Google Scholar
    • Export Citation
  • Tegen, I., S. P. Harrison, K. Kohfeld, I. C. Prentice, M. Coe, and M. Hermann, 2002: Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study. J. Geophys. Res., 107:45764597.

    • Search Google Scholar
    • Export Citation
  • Textor, C., Coauthors 2005: Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys. Discuss., 5:83318420.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117:17791800.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59:19171942.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8:12511256.

  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34:11491152.

  • Vignati, E., J. Wilson, and P. Stier, 2004: M7: A size resolved aerosol mixture module for the use in global aerosol models. J. Geophys. Res., 109.D22202, doi:10.1029/2003JD004485.

    • Search Google Scholar
    • Export Citation
  • Vink, S. and C. Measures, 2001: The role of dust deposition in determining surface water distributions of A1 and Fe in the South West Atlantic. Deep-Sea Res., 48:27822809.

    • Search Google Scholar
    • Export Citation
  • West, J. J., A. S. Ansari, and S. N. Pandis, 1999: Marginal PM2.5: Nonlinear mass response to sulfate reductions in the eastern United States. J. Air Waste Manage. Assoc., 49:14151424.

    • Search Google Scholar
    • Export Citation
  • Wetzel, P., E. Maier-Reimer, M. Botzet, J. Jungclaus, N. Keenlyside, and M. Latif, 2006: Effects of ocean biology on the penetrative radiation in a coupled climate model. J. Climate, 19:39733987.

    • Search Google Scholar
    • Export Citation
  • WHO 2003: Health aspect of air pollution with particulate matter, ozone and nitrogen dioxide. WHO Working Group Rep., 98 pp. [Available online at http://www.euro.who.int.].

  • Wilson, J., C. Cuvelier, and F. Raes, 2001: A modeling study of global mixed aerosol fields. J. Geophys. Res., 106:3408134108.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 326 67 5
PDF Downloads 136 41 4