Ocean Circulation and Tropical Variability in the Coupled Model ECHAM5/MPI-OM

J. H. Jungclaus Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by J. H. Jungclaus in
Current site
Google Scholar
PubMed
Close
,
N. Keenlyside Leibniz-Institut für Meereswissenschaften, Kiel, Germany

Search for other papers by N. Keenlyside in
Current site
Google Scholar
PubMed
Close
,
M. Botzet Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by M. Botzet in
Current site
Google Scholar
PubMed
Close
,
H. Haak Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by H. Haak in
Current site
Google Scholar
PubMed
Close
,
J.-J. Luo Frontier Research System for Global Change, Yokohama, Japan

Search for other papers by J.-J. Luo in
Current site
Google Scholar
PubMed
Close
,
M. Latif Leibniz-Institut für Meereswissenschaften, Kiel, Germany

Search for other papers by M. Latif in
Current site
Google Scholar
PubMed
Close
,
J. Marotzke Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by J. Marotzke in
Current site
Google Scholar
PubMed
Close
,
U. Mikolajewicz Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by U. Mikolajewicz in
Current site
Google Scholar
PubMed
Close
, and
E. Roeckner Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by E. Roeckner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes the mean ocean circulation and the tropical variability simulated by the Max Planck Institute for Meteorology (MPI-M) coupled atmosphere–ocean general circulation model (AOGCM). Results are presented from a version of the coupled model that served as a prototype for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) simulations. The model does not require flux adjustment to maintain a stable climate. A control simulation with present-day greenhouse gases is analyzed, and the simulation of key oceanic features, such as sea surface temperatures (SSTs), large-scale circulation, meridional heat and freshwater transports, and sea ice are compared with observations.

A parameterization that accounts for the effect of ocean currents on surface wind stress is implemented in the model. The largest impact of this parameterization is in the tropical Pacific, where the mean state is significantly improved: the strength of the trade winds and the associated equatorial upwelling weaken, and there is a reduction of the model’s equatorial cold SST bias by more than 1 K. Equatorial SST variability also becomes more realistic. The strength of the variability is reduced by about 30% in the eastern equatorial Pacific and the extension of SST variability into the warm pool is significantly reduced. The dominant El Niño–Southern Oscillation (ENSO) period shifts from 3 to 4 yr. Without the parameterization an unrealistically strong westward propagation of SST anomalies is simulated. The reasons for the changes in variability are linked to changes in both the mean state and to a reduction in atmospheric sensitivity to SST changes and oceanic sensitivity to wind anomalies.

Corresponding author address: Dr. Johann Jungclaus, Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany. Email: johann.jungclaus@zmaw.de

Abstract

This paper describes the mean ocean circulation and the tropical variability simulated by the Max Planck Institute for Meteorology (MPI-M) coupled atmosphere–ocean general circulation model (AOGCM). Results are presented from a version of the coupled model that served as a prototype for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) simulations. The model does not require flux adjustment to maintain a stable climate. A control simulation with present-day greenhouse gases is analyzed, and the simulation of key oceanic features, such as sea surface temperatures (SSTs), large-scale circulation, meridional heat and freshwater transports, and sea ice are compared with observations.

A parameterization that accounts for the effect of ocean currents on surface wind stress is implemented in the model. The largest impact of this parameterization is in the tropical Pacific, where the mean state is significantly improved: the strength of the trade winds and the associated equatorial upwelling weaken, and there is a reduction of the model’s equatorial cold SST bias by more than 1 K. Equatorial SST variability also becomes more realistic. The strength of the variability is reduced by about 30% in the eastern equatorial Pacific and the extension of SST variability into the warm pool is significantly reduced. The dominant El Niño–Southern Oscillation (ENSO) period shifts from 3 to 4 yr. Without the parameterization an unrealistically strong westward propagation of SST anomalies is simulated. The reasons for the changes in variability are linked to changes in both the mean state and to a reduction in atmospheric sensitivity to SST changes and oceanic sensitivity to wind anomalies.

Corresponding author address: Dr. Johann Jungclaus, Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany. Email: johann.jungclaus@zmaw.de

Save
  • Aagaard, K. and E. C. Carmack, 1989: The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res., 94:1448514498.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A. and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys., 17:173265.

    • Search Google Scholar
    • Export Citation
  • Barthelet, P., L. Terray, and S. Valcke, 1998: Transient CO2 experiment using the ARPEGE/OPAICE non flux corrected coupled model. Geophys. Res. Lett., 25:22772280.

    • Search Google Scholar
    • Export Citation
  • Burgers, G. and D. B. Stephenson, 1999: The “normality” of El Niño. Geophys. Res. Lett., 26:10271030.

  • Colony, R. and A. S. Thorndike, 1984: An estimate of the mean field of Arctic Sea Ice motion. J. Geophys. Res., 89:1062310629.

  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, in press.

  • Da Silva, A. M., C. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 83 pp.

  • Emery, W. J., C. W. Fowler, and J. A. Maslanik, 1997: Satellite-derived maps of Arctic and Antarctic sea ice motion: 1988 to 1994. Geophys. Res. Lett., 24:897900.

    • Search Google Scholar
    • Export Citation
  • Federov, A. V. and S. G. Philander, 2001: A stability analysis of tropical ocean–atmosphere interactions: Bridging measurements and theory for El Niño. J. Climate, 14:30863101.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A. and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408:453456.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A. and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Climate, 16:696705.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25:463474.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., F. O. Bryan, G. Donabasoglu, S. C. Doney, W. R. Holland, W. G. Large, and J. C. McWilliams, 1998: The NCAR Climate System Model global ocean component. J. Climate, 11:12871306.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., W. G. Large, and F. O. Bryan, 2001: What sets the mean transport through Drake Passage? J. Geophys. Res., 106:C2. 26932712.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1978: Deep Antarctic convection west of Maud Rise. J. Phys. Oceanogr., 8:600612.

  • Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustment. Climate Dyn., 16:147168.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr., 28:831841.

  • Gualdi, S., A. Navarra, E. Guilyardi, and P. Delecluse, 2003: Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM. Ann. Geophys., 46:126.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., Coauthors 2004: Representing El Niño in coupled ocean–atmosphere GCMs: The dominat role of the atmospheric component. J. Climate, 17:46234629.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S. and L. Dümenil, 1998: A parameterization of the lateral waterflow for the global scale. Climate Dyn., 14:1731.

  • Hagemann, S. and L. Dümenil-Gates, 2003: An improved sub grid runoff parameterization scheme for climate models. Climate Dyn., 21:349359.

    • Search Google Scholar
    • Export Citation
  • Halpern, D., 1988: Moored surface wind observations at four sites along the Pacific equator between 140° and 95°W. J. Climate, 1:12511260.

    • Search Google Scholar
    • Export Citation
  • Hibler III, W. D., 1979: A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9:815846.

  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Huang, B. and Z. Liu, 2002: An OGCM simulation of seasonal and interannual variabilities in the surface-layer Pacific of the equatorial band. Adv. Atmos. Sci., 19:219235.

    • Search Google Scholar
    • Export Citation
  • Johns, W. E., T. N. Lee, R. J. Zantopp, and E. Fillenbaum, 1997: Updated transatlantic heat flux at 26.5N. International WOCE Newsletter, No. 27, WOCE International Project Office, Southampton, United Kingdom, 15–22.

  • Josey, S. A., E. C. Kent, D. Oakley, and P. K. Taylor, 1996: A new global air-sea heat and momentum flux climatology. International WOCE Newsletter, No. 24, WOCE International Project Office, Southampton, United Kingdom, 3–5.

  • Keenlyside, N., M. Latif, M. Botzet, J. Jungclaus, and U. Schulzweida, 2004: A coupled method for initialising ENSO forecasts using SST data. Tellus, 57A:340356.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T. and P. R. Gent, 2004: The Community Climate System Model, version 2. J. Climate, 17:36663682.

  • Kwok, R., G. F. Cunningham, and S. S. Pang, 2004: Fram Strait sea ice outflow. J. Geophys. Res., 109.C01009, doi:10.1029/2003JC001785.

  • Large, W. G. and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11:324326.

  • Large, W., G. Danansoglu, J. C. McWilliams, P. Gent, and F. O. Bryan, 2001: Equatorial circulation of a global ocean climate model with anisotropic horizontal viscosity. J. Phys. Oceanogr., 31:518536.

    • Search Google Scholar
    • Export Citation
  • Larsen, J. C., 1992: Transport and heat flux of the Florida Current at 27°N derived from cross-stream voltages and profiling data. Philos. Trans. Roy. Soc. London, A338:169236.

    • Search Google Scholar
    • Export Citation
  • Latif, M., E. Roeckner, U. Mikolajewicz, and R. Voss, 2000: Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J. Climate, 13:18091813.

    • Search Google Scholar
    • Export Citation
  • Latif, M., Coauthors 2001: ENSIP: The El Niño simulation intercomparison project. Climate Dyn., 18:255276.

  • Levitus, S., Coauthors 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Li, T. M. and S. G. H. Philander, 1996: On the annual cycle of the eastern equatorial Pacific. J. Climate, 9:29862998.

  • Li, J. L., X. H. Zhang, Y. Q. Yu, and F. S. Dai, 2004: Primary reasoning behind the double ITCZ phenomenon in a coupled ocean-atmosphere general circulation model. Adv. Atmos. Sci., 21:857867.

    • Search Google Scholar
    • Export Citation
  • Luo, J-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18:23442360.

    • Search Google Scholar
    • Export Citation
  • Macdonald, A. M., 1998: The global ocean circulation: A hydrographic estimate and regional analysis. Progress in Oceanography, Vol. 41, Pergamon, 281–382.

  • Macdonald, A. M. and C. Wunsch, 1996: Oceanic estimates of global ocean heat transport. International WOCE Newsletter, No. 24, WOCE International Project Office, Southampton, United Kingdom, 5–6.

  • Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Röske, 2003: The Max- Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5:91127.

    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., N. L. Bindoff, G. D. Williams, and W. F. Budd, 2004: Modeling water mass formation in the Mertz Glacier Polynya and Adelie Depression, East Antarctic. J. Geophys. Res., 109.C11003, doi:10.1029/2004JC002441.

    • Search Google Scholar
    • Export Citation
  • Mechoso, C. R., Coauthors 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123:28252838.

    • Search Google Scholar
    • Export Citation
  • Meehl, G., P. R. Gent, J. M. Arblaster, B. L. Otto-Bliesner, E. C. Brady, and A. Craig, 2001: Factors that affect the amplitude of El Niño in global coupled climate models. Climate Dyn., 17:515526.

    • Search Google Scholar
    • Export Citation
  • National Geophysical Data Center 1988: Digital relief of the surface of the Earth. Data Announcement 88-MGG-02, NOAA, Boulder, CO.

  • Nowlin, W. D. J. and J. M. Klinck, 1986: The physics of the Antarctic Circumpolar Current. Rev. Geophys., 24:469491.

  • Orsi, A. H., G. C. Johnson, and J. L. Bullister, 1999: Circulation, mixing, and production of Antarctic Bottom Water. Progress in Oceanography, Vol. 43, Pergamon, 55–109.

  • Pacanowski, R. C., 1987: Effect of equatorial currents on surface stress. J. Phys. Oceanogr., 17:833838.

  • Pacanowski, R. C. and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11:14431451.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., D. T. Torres, and R. A. Clarke, 2002: Hydrography of the Labrador Sea during active convection. J. Phys. Oceanogr., 32:428457.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V. and M. A. Johnson, 2000: Arctic decadal and interdecadal variability. Geophys. Res. Lett., 27:40974100.

  • Proshutinsky, A., R. H. Bourke, and F. A. McLaughlin, 2002: The role of the Beaufort Gyre in Arctic climate variability: Seasonal to decadal climate scales. Geophys. Res. Lett., 29.2100, doi:101029/2002GL015847.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Holton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108.4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycanal mixing by coordinate rotation. J. Phys. Oceanogr., 12:11541158.

  • Rintoul, S. R. and C. Wunsch, 1991: Mass, heat, oxygen and nutrient fluxes and budgets in the North Atlantic Ocean. Deep-Sea Res., 38:(Suppl. 1). S355S377.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R. and S. Sokolov, 2001: Baroclinic transport variability of the Antarctic Circumpolar Current south of Australia (WOCE repeat section SR3). J. Geophys. Res., 106:C2. 28152832.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., Coauthors 2004: Impact of an eddy-permitting ocean resolution on control and climate change simulations with a global coupled GCM. J. Climate, 17:320.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., Coauthors 2003: The atmospheric general circulation model ECHAM5, Part I: Model description. Max-Planck-Institut für Meteorologie, Rep. 349, 127 pp.

  • Ross, C. K., 1984: Temperature-salinity characteristics of the “overflow” water in Denmark Strait during “Overflow ’73.”. Rapp. P. V. Reun. Cons. Int. Explor. Mer., 185:111119.

    • Search Google Scholar
    • Export Citation
  • Saunders, P., 1990: Cold outflow from the Faroe Bank Channel. J. Phys. Oceanogr., 20:2943.

  • Sloyan, B. and S. Rintoul, 2001: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31:143173.

  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. J. Climate, 14:20792087.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16:32133226.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E. and A. Solomon, 1994: The global heat balance: Heat transports in the atmosphere and ocean. Climate Dyn., 10:107134.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., A. Caubel, D. Declat, and L. Terray, 2003: OASIS Ocean Atmosphere Sea Ice Soil users’s guide. CERFACS Tech. Rep. TR/CMGC/03/69, Toulouse, France, 85 pp.

  • van Oldenborgh, G. J., S. Y. Philips, and M. Collins, 2005: El Niño in a changing climate: A multi model study. Ocean Sci., 1:8195.

  • Vialard, J., C. Menkes, J-P. Boulanger, P. Delecluse, E. Guilyardi, M. J. McPhaden, and G. Madec, 2001: A model study of oceanic mechanisms affecting equatorial Pacific sea surface temperature during the 1997–98 El Niño. J. Phys. Oceanogr., 31:16491675.

    • Search Google Scholar
    • Export Citation
  • Vinje, T., 2001: Fram Strait ice fluxes and atmospheric circulation: 1950–2000. J. Climate, 14:35083517.

  • Washington, W. M., Coauthors 2000: Parallel climate model (PCM) control and transient simulations. Climate Dyn., 16:755774.

  • Weisberg, R. H., 1984: Seasonal adjustments in the equatorial Atlantic during 1983 as seen by surface moorings. Geophys. Res. Lett., 11:733735.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H. and L. Qiao, 2000: Equatorial upwelling in the central Pacific estimated from moored velocity profilers. J. Phys. Oceanogr., 30:105124.

    • Search Google Scholar
    • Export Citation
  • Wetzel, P., E. Maier-Reimer, M. Botzet, J. Jungclaus, N. Keenlyside, and M. Latif, 2006: Effects of ocean biology on the penetrative radiation in a coupled climate model. J. Climate, 19:39733987.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S., 2001: Ocean transport of freshwater. Ocean Circulation and Climate, G. Siedler et al., Eds., Academic Press, 475–488.

  • Wijffels, S., N. Bray, S. Hautala, G. Meyers, and W. M. L. Morawitz, 1996: The WOCE Indonesian throughflow repeat sections: I10 and IR6. International WOCE Newsletter, No. 24, WOCE International Project Office, Southampton, United Kingdom, 25–28.

  • Willis, J. K., D. Roemmich, and B. Cornuelle, 2004: Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J. Geophys. Res., 109.C12036, doi:10.1029/2003JC002260.

    • Search Google Scholar
    • Export Citation
  • Wolff, J. O., E. Maier-Reimer, and S. Legutke, 1997: The Hamburg Ocean Primitive Equation Model HOPE. Tech. Rep. 13, German Climate Computer Center (DKRZ), Hamburg, Germany, 98 pp.

  • Xie, P. and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78:25392558.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1960 719 78
PDF Downloads 816 141 15