The HAMMONIA Chemistry Climate Model: Sensitivity of the Mesopause Region to the 11-Year Solar Cycle and CO2 Doubling

H. Schmidt Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by H. Schmidt in
Current site
Google Scholar
PubMed
Close
,
G. P. Brasseur Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by G. P. Brasseur in
Current site
Google Scholar
PubMed
Close
,
M. Charron Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by M. Charron in
Current site
Google Scholar
PubMed
Close
,
E. Manzini Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by E. Manzini in
Current site
Google Scholar
PubMed
Close
,
M. A. Giorgetta Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by M. A. Giorgetta in
Current site
Google Scholar
PubMed
Close
,
T. Diehl Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by T. Diehl in
Current site
Google Scholar
PubMed
Close
,
V. I. Fomichev York University, Toronto, Ontario, Canada

Search for other papers by V. I. Fomichev in
Current site
Google Scholar
PubMed
Close
,
D. Kinnison National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by D. Kinnison in
Current site
Google Scholar
PubMed
Close
,
D. Marsh National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by D. Marsh in
Current site
Google Scholar
PubMed
Close
, and
S. Walters National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by S. Walters in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper introduces the three-dimensional Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), which treats atmospheric dynamics, radiation, and chemistry interactively for the height range from the earth’s surface to the thermosphere (approximately 250 km). It is based on the latest version of the ECHAM atmospheric general circulation model of the Max Planck Institute for Meteorology in Hamburg, Germany, which is extended to include important radiative and dynamical processes of the upper atmosphere and is coupled to a chemistry module containing 48 compounds. The model is applied to study the effects of natural and anthropogenic climate forcing on the atmosphere, represented, on the one hand, by the 11-yr solar cycle and, on the other hand, by a doubling of the present-day concentration of carbon dioxide. The numerical experiments are analyzed with the focus on the effects on temperature and chemical composition in the mesopause region. Results include a temperature response to the solar cycle by 2 to 10 K in the mesopause region with the largest values occurring slightly above the summer mesopause. Ozone in the secondary maximum increases by up to 20% for solar maximum conditions. Changes in winds are in general small. In the case of a doubling of carbon dioxide the simulation indicates a cooling of the atmosphere everywhere above the tropopause but by the smallest values around the mesopause. It is shown that the temperature response up to the mesopause is strongly influenced by changes in dynamics. During Northern Hemisphere summer, dynamical processes alone would lead to an almost global warming of up to 3 K in the uppermost mesosphere.

* Current affiliation: Meteorological Service of Canada, Dorval, Canada

+ Current affiliation: National Institute for Geophysics and Volcanology, Bologna, Italy

# Current affiliation: NASA Goddard Space Flight Center, Greenbelt, Maryland

Corresponding author address: H. Schmidt, Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany. Email: hauke.schmidt@zmaw.de

Abstract

This paper introduces the three-dimensional Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), which treats atmospheric dynamics, radiation, and chemistry interactively for the height range from the earth’s surface to the thermosphere (approximately 250 km). It is based on the latest version of the ECHAM atmospheric general circulation model of the Max Planck Institute for Meteorology in Hamburg, Germany, which is extended to include important radiative and dynamical processes of the upper atmosphere and is coupled to a chemistry module containing 48 compounds. The model is applied to study the effects of natural and anthropogenic climate forcing on the atmosphere, represented, on the one hand, by the 11-yr solar cycle and, on the other hand, by a doubling of the present-day concentration of carbon dioxide. The numerical experiments are analyzed with the focus on the effects on temperature and chemical composition in the mesopause region. Results include a temperature response to the solar cycle by 2 to 10 K in the mesopause region with the largest values occurring slightly above the summer mesopause. Ozone in the secondary maximum increases by up to 20% for solar maximum conditions. Changes in winds are in general small. In the case of a doubling of carbon dioxide the simulation indicates a cooling of the atmosphere everywhere above the tropopause but by the smallest values around the mesopause. It is shown that the temperature response up to the mesopause is strongly influenced by changes in dynamics. During Northern Hemisphere summer, dynamical processes alone would lead to an almost global warming of up to 3 K in the uppermost mesosphere.

* Current affiliation: Meteorological Service of Canada, Dorval, Canada

+ Current affiliation: National Institute for Geophysics and Volcanology, Bologna, Italy

# Current affiliation: NASA Goddard Space Flight Center, Greenbelt, Maryland

Corresponding author address: H. Schmidt, Max Planck Institute for Meteorology, Bundesstrasse 53, 20146 Hamburg, Germany. Email: hauke.schmidt@zmaw.de

Save
  • Akmaev, R. A. and V. I. Fomichev, 1998: Cooling of the mesosphere and lower thermosphere due to doubling of CO2. Ann. Geophys., 16:15011512.

    • Search Google Scholar
    • Export Citation
  • Akmaev, R. A., V. A. Yudin, and D. A. Ortland, 1997: SMLTM simulation of the diurnal tide: Comparison with UARS observations. Ann. Geophys., 15:11871197.

    • Search Google Scholar
    • Export Citation
  • Allen, M., J. I. Lunne, and Y. L. Yung, 1984: The vertical distribution of ozone in the mesosphere and lower thermosphere. J. Geophys. Res., 89:48414872.

    • Search Google Scholar
    • Export Citation
  • Bailey, S. M., C. A. Barth, and S. C. Solomon, 2002: A model of nitric oxide in the lower thermosphere. J. Geophys. Res., 107.1206, doi:10.1029/2001JA000258.

    • Search Google Scholar
    • Export Citation
  • Banks, P. M. and G. Kockarts, 1973: Aeronomy, Part B. Academic Press, 355 pp.

  • Barth, C. A., K. D. Mankoff, S. M. Bailey, and S. C. Solomon, 2003: Global observations of nitric oxide in the thermosphere. J. Geophys. Res., 108.1027, doi:10.1029/2002JA009458.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1967: An Introduction to Fluid Dynamics. Cambridge University Press, 635 pp.

  • Beagley, S. R., J. de Grandpré, J. N. Koshyk, N. A. McFarlane, and T. G. Shepherd, 1997: Radiative-dynamical climatology of the first-generation Canadian middle atmosphere model. Atmos.–Ocean, 35:293331.

    • Search Google Scholar
    • Export Citation
  • Beig, G., Coauthors 2003: Review of mesospheric temperature trends. Rev. Geophys., 41.1015, doi:10.1029/2002RG000121.

  • Berger, U. and M. Dameris, 1993: Cooling of the mesosphere due to CO2 increases: A model study. Ann. Geophys., 11:809819.

  • Boville, B. A., 1995: Middle atmosphere version of the CCM2 (MACCM2): Annual cycle and interannual variability. J. Geophys. Res., 100:90179039.

    • Search Google Scholar
    • Export Citation
  • Brasseur, G. P. and D. Offermann, 1986: Recombination of atomic oxygen near the mesopause: Interpretation of rocket data. J. Geophys. Res., 91:1081810824.

    • Search Google Scholar
    • Export Citation
  • Brasseur, G. P. and S. Solomon, 1986: Aeronomy of the Middle Atmosphere. D. Reidel, 452 pp.

  • Brasseur, G. P., A. De Rudder, G. M. Keating, and J. Nicholson III, 1987: Response of middle atmosphere to short-term solar ultraviolet variations: 2. Theory. J. Geophys. Res., 92:903914.

    • Search Google Scholar
    • Export Citation
  • Brasseur, G. P., X. Tie, P. J. Rasch, and F. Lefvre, 1997: A three-dimensional model simulation of the antarctic ozone hole: Impact of anthropogenic chlorine on the lower stratosphere and upper troposphere. J. Geophys. Res., 102:89098930.

    • Search Google Scholar
    • Export Citation
  • Chabrillat, S. and G. Kockarts, 1998: Correction to “Simple parameterization of the absorption of the solar lyman-alpha line.”. Geophys. Res. Lett., 25:7980.

    • Search Google Scholar
    • Export Citation
  • Chabrillat, S., G. Kockarts, D. Fonteyn, and G. Brasseur, 2002: Impact of molecular diffusion on the CO2 distribution and the temperature in the mesosphere. Geophys. Res. Lett., 29.1729, doi:10.1029/2002GL015309.

    • Search Google Scholar
    • Export Citation
  • Charron, M. and E. Manzini, 2002: Gravity waves from fronts: Parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci., 59:923941.

    • Search Google Scholar
    • Export Citation
  • Chen, L., J. London, and G. Brasseur, 1997: Middle atmospheric ozone and temperature responses to solar irradiance variations over 27-day periods. J. Geophys. Res., 102:2995729979.

    • Search Google Scholar
    • Export Citation
  • Chipperfield, M. P., D. Cariolle, P. Simon, R. Ramaroson, and D. J. Lary, 1993: A 3-dimensional modeling study of trace species in the arctic lower stratosphere during winter 1989–1990. J. Geophys. Res., 98:71997218.

    • Search Google Scholar
    • Export Citation
  • de Grandpré, J., S. R. Beagly, V. I. Fomichev, E. Griffioen, J. C. McConnell, and A. S. Medvedev, 2000: Ozone climatology using interactive chemistry: Results from the Canadian middle atmosphere model. J. Geophys. Res., 105:2647526491.

    • Search Google Scholar
    • Export Citation
  • DeLand, M. T., E. P. Shettle, G. E. Thomas, and J. J. Olivero, 2003: Solar backscattered ultraviolet (SBUV) observations of polar mesospheric clouds (PMCs) over two solar cycles. J. Geophys. Res., 108.8445, doi:10.1029/2002JD002398.

    • Search Google Scholar
    • Export Citation
  • Fels, S. B., J. D. Mahlman, M. D. Schwarzkopf, and R. W. Sinclair, 1980: Stratospheric sensitivity to perturbations in ozone and carbon dioxide: Radiative and dynamical response. J. Atmos. Sci., 37:22652297.

    • Search Google Scholar
    • Export Citation
  • Fomichev, V. I. and J-P. Blanchet, 1995: Development of the new CCC/GCM longwave radiation model for extension into the middle atmosphere. Atmos.–Ocean, 33:513531.

    • Search Google Scholar
    • Export Citation
  • Fomichev, V. I., J-P. Blanchet, and D. S. Turner, 1998: Matrix parameterization of the 15 μm CO2 band cooling in the middle and upper atmosphere for variable CO2 concentration. J. Geophys. Res., 103:1150511528.

    • Search Google Scholar
    • Export Citation
  • Fomichev, V. I., W. E. Ward, S. R. Beagley, C. McLandress, J. C. McConnell, N. A. McFarlane, and T. G. Shepherd, 2002: Extended Canadian Middle Atmosphere Model: Zonal mean climatology and physical parameterizations. J. Geophys. Res., 107.4087, doi:10.1029/2001JD000479.

    • Search Google Scholar
    • Export Citation
  • Fomichev, V. I., C. Fu, J. de Grandpré, S. R. Beagley, V. P. Ogibalov, and J. C. McConnell, 2004a: Model thermal response to minor radiative energy sources and sinks in the middle atmosphere. J. Geophys. Res., 109.D19107, doi:10.1029/2004JD004892.

    • Search Google Scholar
    • Export Citation
  • Fomichev, V. I., V. P. Ogibalov, and S. R. Beagley, 2004b: Solar heating by the near-IR CO2 bands in the mesosphere. Geophys. Res. Lett., 31.L21102, doi:10.1029/2004GL020324.

    • Search Google Scholar
    • Export Citation
  • Fouquart, Y. and B. Bonnel, 1980: Computations of solar heating of the earth’s atmosphere: A new parameterization. Contrib. Atmos. Phys., 53:3562.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., 2000: The role of equatorial waves in the semiannual oscillation of the middle atmosphere. Atmospheric Science across the Stratopause, Geophys. Monogr., Vol. 123, Amer. Geophys. Union, 161–176.

  • Garcia, R. R., T. J. Dunkerton, R. S. Lieberman, and R. A. Vincent, 1997: Climatology of the semiannual oscillation of the tropical middle atmosphere. J. Geophys. Res., 102:2601926032.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., D. E. Kinnison, T. J. Dunkerton, and G. P. Brasseur, 2004: The impact of monsoon circulations on the upper troposphere and lower stratosphere. J. Geophys. Res., 109.D22101, doi:10.1029/2004JD004878.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Giorgetta, M. A., E. Manzini, and E. Roeckner, 2002: Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett., 29.1245, doi:10.1029/2002GL014756.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., E. Manzini, E. Roeckner, M. Esch, and L. Bengtsson, 2006: Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. J. Climate, 19:38823901.

    • Search Google Scholar
    • Export Citation
  • Gruzdev, A. N. and G. P. Brasseur, 2005: Long-term changes in the mesosphere calculated by a two-dimensional model. J. Geophys. Res., 110.D03304, doi:10.1029/2003JD004410.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., R. J. Wilson, J. D. Mahlman, and L. J. Umscheid, 1995: Climatology of the SKYHI troposphere–stratosphere–mesosphere general circulation model. J. Atmos. Sci., 52:543.

    • Search Google Scholar
    • Export Citation
  • Heaps, M. G., 1978: A parameterization of cosmic ray ionization. Planet. Space Sci., 26:513517.

  • Hedin, A., 1991: Extension of the MSIS thermosphere model into the middle and lower atmosphere. J. Geophys. Res., 96:11591172.

  • Hines, C. O., 1997a: Doppler-spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. J. Atmos. Sol. Terr. Phys., 59:371386.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997b: Doppler-spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation. J. Atmos. Sol. Terr. Phys., 59:387400.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R. and M. J. Alexander, 2000: The role of waves in the transport circulation of the middle atmosphere. Atmospheric Science across the Stratopause, Geophys. Monogr., Vol. 123, Amer. Geophys. Union, 21–36.

  • Hong, S. S. and R. S. Lindzen, 1976: Solar semidiurnal tide in the thermosphere. J. Atmos. Sci., 33:135153.

  • Horowitz, L. W., Coauthors 2003: A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. J. Geophys. Res., 108.4784, doi:10.1029/2002JD002853.

    • Search Google Scholar
    • Export Citation
  • Huang, T. Y. W. and G. P. Brasseur, 1993: Effect of long-term solar variability in a two-dimensional interactive model of the middle atmosphere. J. Geophys. Res., 98:2041220427.

    • Search Google Scholar
    • Export Citation
  • Huang, T., Coauthors 1998: Description of SOCRATES—A chemical dynamical radiative two-dimensional model. Tech. Rep. NCAR/TN-440+EDD, NCAR, Boulder, CO, 94 pp.

  • Jonsson, A. I., J. de Grandpré, V. I. Fomichev, J. C. McConnell, and S. R. Beagley, 2004: Doubled CO2-induced cooling in the middle atmosphere: Photochemical analysis of the ozone radiative feedback. J. Geophys. Res., 109.D24103, doi:10.1029/2004JD005093.

    • Search Google Scholar
    • Export Citation
  • Kaufmann, M., O. A. Gusev, K. U. Grossmann, F. J. Martin-Torres, D. R. Marsh, and A. A. Kutepov, 2003: Satellite observations of daytime and nighttime ozone in the mesosphere and lower thermosphere. J. Geophys. Res., 108.4272, doi:10.1029/2002JD002800.

    • Search Google Scholar
    • Export Citation
  • Khosravi, R., G. Brasseur, A. Smith, D. Rusch, S. Walters, S. Chabrillat, and G. Kockarts, 2002: Response of the mesosphere to human-induced perturbations and solar variability calculated by a 2-d model. J. Geophys. Res., 107.4358, doi:10.1029/2001JD001235.

    • Search Google Scholar
    • Export Citation
  • Koppers, G. A. A. and D. P. Murtagh, 1996: Model studies of the influence of O2 photodissociation parameterizations in the Schumann-Runge bands on ozone related photolysis in the upper atmosphere. Ann. Geophys., 14:6879.

    • Search Google Scholar
    • Export Citation
  • Labitzke, K., 2003: The global signal of the 11-year sunspot cycle in the atmosphere: When do we need the QBO? Meteor. Z., 12:209216.

    • Search Google Scholar
    • Export Citation
  • Lean, J., J. Rottman, G. J. Kyle, H. L. Woods, T. N. Hickey, and J. R. Pugga, 1997: Detection and parameterization of variations in solar mid and near-ultraviolet radiation (200–400 nm). J. Geophys. Res., 102:2993929956.

    • Search Google Scholar
    • Export Citation
  • Lefèvre, F., G. Brasseur, I. Folkins, and A. K. Smith, 1994: Stratospheric chlorine monoxide and ozone: Three-dimensional model simulations. J. Geophys. Res., 99:81838195.

    • Search Google Scholar
    • Export Citation
  • Lieberman, R. S. and P. B. Hays, 1994: An estimate of the momentum deposition in the lower thermosphere by the observed diurnal tide. J. Atmos. Sci., 51:30943105.

    • Search Google Scholar
    • Export Citation
  • Lin, S-J. and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport schemes. Mon. Wea. Rev., 124:20462070.

  • Lott, F. and M. J. Miller, 1997: A new subgrid-scale orographic drag parameterization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123:101127.

    • Search Google Scholar
    • Export Citation
  • Madronich, S. and S. Flocke, 1998: The role of solar radiation in atmospheric chemistry. Handbook of Environmental Chemistry, P. Boule, Ed., Springer, 1–26.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., N. A. McFarlane, and C. McLandress, 1997: Impact of the Doppler spread parameterization on the simulation of the middle atmosphere circulation using the MA/ECHAM4 general circulation model. J. Geophys. Res., 102:2575125762.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., M. A. Giorgetta, M. Esch, L. Kornblueh, and E. Roeckner, 2006: The influence of sea surface temperatures on the Northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19:38633881.

    • Search Google Scholar
    • Export Citation
  • Marsh, D., A. Smith, G. Brasseur, M. Kaufmann, and K. Grossmann, 2001: The existence of a tertiary ozone maximum in the high-latitude middle mesosphere. Geophys. Res. Lett., 28:45314534.

    • Search Google Scholar
    • Export Citation
  • Marsh, D., A. Smith, and E. Noble, 2003: Mesospheric ozone response to changes in water vapor. J. Geophys. Res., 108.4109, doi:10.1029/2002JD002705.

    • Search Google Scholar
    • Export Citation
  • Marsh, D. R., S. C. Solomon, and A. E. Reynolds, 2004: Empirical model of nitric oxide in the lower thermosphere. J. Geophys. Res., 109.A07301, doi:10.1029/2003JA010199.

    • Search Google Scholar
    • Export Citation
  • Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5:91127.

    • Search Google Scholar
    • Export Citation
  • McEwan, M. J. and L. F. Phillips, 1975: Chemistry of the Atmosphere. Edward Arnold Ltd., 301 pp.

  • Mertens, C. J., M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, L. L. Gordley, and J. M. Russell III, 2001: Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 μm earth limb emission under non-LTE conditions. Geophys. Res. Lett., 28:13911394.

    • Search Google Scholar
    • Export Citation
  • Mertens, C. J., Coauthors 2004: SABER observations of mesospheric temperatures and comparisons with falling sphere measurements taken during the 2002 summer MaCWAVE campaign. Geophys. Res. Lett., 31.L03105, doi:10.1029/2003GL018605.

    • Search Google Scholar
    • Export Citation
  • Minschwaner, K. and D. E. Siskind, 1993: A new calculation of NO photolysis in the stratosphere, mesosphere, and lower thermosphere. J. Geophys. Res., 98:2040120412.

    • Search Google Scholar
    • Export Citation
  • Miyahara, S., Y. Yoshida, and Y. Miyoshi, 1993: Dynamic coupling between the lower and upper atmosphere by tides and gravity waves. J. Atmos. Terr. Phys., 55:10391053.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. J. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102:1666316682.

    • Search Google Scholar
    • Export Citation
  • Mlynczak, M. G., 2000: A contemporary assessment of the mesospheric energy budget. Atmospheric Science across the Stratopause, Geophys. Monogr., Vol. 123, Amer. Geophys. Union, 37–52.

  • Mlynczak, M. G. and S. Solomon, 1993: A detailed evaluation of the heating efficiency in the middle atmosphere. J. Geophys. Res., 98:1051710541.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., Coauthors 1996: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res., 101:39894006.

    • Search Google Scholar
    • Export Citation
  • Ogibalov, V. P. and V. I. Fomichev, 2003: Parameterization of solar heating by the near IR CO2 bands in the mesosphere. Adv. Space Res., 32:759764.

    • Search Google Scholar
    • Export Citation
  • Portmann, R. W., G. E. Thomas, S. Solomon, and R. R. Garcia, 1995: The importance of dynamical feedbacks on doubled CO2-induced changes in the thermal structure of the mesosphere. Geophys. Res. Lett., 22:17331736.

    • Search Google Scholar
    • Export Citation
  • Randel, W., F. Wu, J. M. Russell III, A. Roche, and J. W. Waters, 1998: Seasonal cycles and QBO variations in stratospheric CH4 and H2O observed in UARS HALOE data. J. Atmos. Sci., 55:163185.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., B. A. Boville, and G. R. Brasseur, 1995: A three-dimensional general circulation model with coupled chemistry for the middle atmosphere. J. Geophys. Res., 100:90419071.

    • Search Google Scholar
    • Export Citation
  • Richards, P. G., J. A. Fennelly, and D. G. Torr, 1994: A solar EUV flux model for aeronomic calculations. J. Geophys. Res., 99:89818992. Correction, 99, 13 283.

    • Search Google Scholar
    • Export Citation
  • Rind, D., R. Suozzo, N. K. Balachandran, and M. J. Prather, 1990: Climate change and the middle atmosphere. Part I: The doubled CO2 climate. J. Atmos. Sci., 47:475494.

    • Search Google Scholar
    • Export Citation
  • Roble, R. G., 1995: Energetics of the mesosphere and thermosphere. The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, Geophys. Monogr., Vol. 87, Amer. Geophys. Union, 1–21.

  • Roble, R. G., 2000: On the feasability of developing a global atmospheric model extending from the ground to the exosphere. Atmospheric Science across the Stratopause, Geophys. Monogr., Vol. 123, Amer. Geophys. Union, 53–68.

  • Roble, R. G. and R. E. Dickinson, 1989: How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere? Geophys. Res. Lett., 16:14411444.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., Coauthors 2003: The atmospheric general circulation model ECHAM 5. Part I: Model description. Tech. Rep. 349, MPI for Meteorology, Hamburg, Germany, 127 pp.

  • Roeckner, E., Coauthors 2005: The atmospheric general circulation model ECHAM 5. Part II: Sensitivity of simulated climate to horizontal and vertical resolution. Tech. Rep. 354, MPI for Meteorology, Hamburg, Germany, 64 pp.

  • Roeckner, E., Coauthors 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19:37713791.

    • Search Google Scholar
    • Export Citation
  • Rose, K. and G. Brasseur, 1989: A three-dimensional model of chemically active trace species in the middle atmosphere during disturbed winter conditions. J. Geophys. Res., 94:1638716403.

    • Search Google Scholar
    • Export Citation
  • Rozanov, E. V., M. E. Schlesinger, T. A. Egorova, B. Li, N. Andronova, and V. A. Zubov, 2004: Atmospheric response to the observed increase of solar UV radiation from solar minimum to solar maximum simulated by the University of Illinois at Urbana-Champaign climate-chemistry model. J. Geophys. Res., 109.D01110, doi:10.1029/2003JD003796.

    • Search Google Scholar
    • Export Citation
  • Sassi, F., R. R. Garcia, B. A. Boville, and H. Liu, 2002: On temperature inversions and the mesospheric surf zone. J. Geophys. Res., 107.4380, doi:10.1029/2001JD001525.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., D. M. Burridge, M. Jarraud, C. Girard, and W. Wergen, 1989: The ECMWF medium-range prediction model: Development of the numerical formulations and the impact of increased resolution. Meteor. Atmos. Phys., 40:2860.

    • Search Google Scholar
    • Export Citation
  • Smith, A. K., 2004: Physics and chemistry of the mesopause region. J. Atmos. Sol. Terr. Phys., 66:839857.

  • Sonnemann, G., C. Kremp, A. Ebel, and U. Berger, 1998: A three-dimensional dynamic model of the minor constituents of the mesosphere. Atmos. Environ., 32:31573172.

    • Search Google Scholar
    • Export Citation
  • Steil, B., C. Brühl, E. Manzini, P. J. Crutzen, J. Lelieveld, P. J. Rasch, E. Roeckner, and K. Krüger, 2003: A new interactive chemistry-climate model: 1. Present-day climatology and interannual variability of the middle atmosphere using the model and 9 years of HALOE/UARS data. J. Geophys. Res., 108.4290, doi:10.1029/2002JD002971.

    • Search Google Scholar
    • Export Citation
  • Summers, M. E., D. F. Strobel, R. M. Bevilacqua, X. Zhu, M. T. DeLand, M. Allen, and G. M. Keating, 1990: A model study of the response of mesospheric ozone to short-term solar ultraviolet flux variations. J. Geophys. Res., 95:2252322538.

    • Search Google Scholar
    • Export Citation
  • Swinbank, R. and D. A. Ortland, 2003: Compilation of wind data for the Upper Atmosphere Research Satellite (UARS) Reference Atmosphere Project. J. Geophys. Res., 108.4615, doi:10.1029/2002JD003135.

    • Search Google Scholar
    • Export Citation
  • von Zahn, U. and U. Berger, 2003: Persistent ice cloud in the midsummer upper mesosphere at high latitudes: Three-dimensional modeling and cloud interactions with ambient water vapor. J. Geophys. Res., 108.8451, doi:10.1029/2002JD002409.

    • Search Google Scholar
    • Export Citation
  • Wang, H. J., D. M. Cunnold, and X. Bao, 1996: A critical analysis of stratospheric aerosol and gas experiment ozone trends. J. Geophys. Res., 101:1249512514.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., J-H. Yee, and E. R. Talaat, 2003: Effect of short-term solar ultraviolet flux variability in a coupled model of photochemistry and dynamics. J. Atmos. Sci., 60:491509.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1016 506 19
PDF Downloads 500 188 33