Impact of Climate Change on the Future Chemical Composition of the Global Troposphere

Guy P. Brasseur Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Guy P. Brasseur in
Current site
Google Scholar
PubMed
Close
,
Martin Schultz Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Martin Schultz in
Current site
Google Scholar
PubMed
Close
,
Claire Granier Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Claire Granier in
Current site
Google Scholar
PubMed
Close
,
Marielle Saunois Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Marielle Saunois in
Current site
Google Scholar
PubMed
Close
,
Thomas Diehl Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Thomas Diehl in
Current site
Google Scholar
PubMed
Close
,
Michael Botzet Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Michael Botzet in
Current site
Google Scholar
PubMed
Close
,
Erich Roeckner Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Erich Roeckner in
Current site
Google Scholar
PubMed
Close
, and
Stacy Walters National Center for Atmospheric Research,@ Boulder, Colorado

Search for other papers by Stacy Walters in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A global chemical transport model of the atmosphere [the Model for Ozone and Related Tracers, version 2 (MOZART-2)] driven by prescribed surface emissions and by meteorological fields provided by the ECHAM5/Max Planck Institute Ocean Model (MPI-OM-1) coupled atmosphere–ocean model is used to assess how expected climate changes (2100 versus 2000 periods) should affect the chemical composition of the troposphere. Calculations suggest that ozone changes resulting from climate change only are negative in a large fraction of the troposphere because of enhanced photochemical destruction by water vapor. In the Tropics, increased lightning activity should lead to larger ozone concentrations. The magnitude of the climate-induced ozone changes in the troposphere remains smaller than the changes produced by enhanced anthropogenic emissions when the Special Report on Emission Scenarios (SRES) A2P is adopted to describe the future evolution of these emissions. Predictions depend strongly on future trends in atmospheric methane levels, which are not well established. Changes in the emissions of NOx by bacteria in soils and of nonmethane hydrocarbons by vegetation associated with climate change could have a significant impact on future ozone levels.

* Current affiliation: National Center for Atmospheric Research, Boulder, Colorado

+ Additional affiliation: Service d’Aéronomie/IPSL, Paris, France, and Aeronomy Laboratory, NOAA–CIRES, Boulder, Colorado

# Current affiliation: NASA Goddard Space Flight Center, Greenbelt, Maryland

@ The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Guy P. Brasseur, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: brasseur@ucar.edu

Abstract

A global chemical transport model of the atmosphere [the Model for Ozone and Related Tracers, version 2 (MOZART-2)] driven by prescribed surface emissions and by meteorological fields provided by the ECHAM5/Max Planck Institute Ocean Model (MPI-OM-1) coupled atmosphere–ocean model is used to assess how expected climate changes (2100 versus 2000 periods) should affect the chemical composition of the troposphere. Calculations suggest that ozone changes resulting from climate change only are negative in a large fraction of the troposphere because of enhanced photochemical destruction by water vapor. In the Tropics, increased lightning activity should lead to larger ozone concentrations. The magnitude of the climate-induced ozone changes in the troposphere remains smaller than the changes produced by enhanced anthropogenic emissions when the Special Report on Emission Scenarios (SRES) A2P is adopted to describe the future evolution of these emissions. Predictions depend strongly on future trends in atmospheric methane levels, which are not well established. Changes in the emissions of NOx by bacteria in soils and of nonmethane hydrocarbons by vegetation associated with climate change could have a significant impact on future ozone levels.

* Current affiliation: National Center for Atmospheric Research, Boulder, Colorado

+ Additional affiliation: Service d’Aéronomie/IPSL, Paris, France, and Aeronomy Laboratory, NOAA–CIRES, Boulder, Colorado

# Current affiliation: NASA Goddard Space Flight Center, Greenbelt, Maryland

@ The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Guy P. Brasseur, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: brasseur@ucar.edu

Save
  • Amiro, B. D., B. J. Stocks, M. E. Alexander, M. D. Flannigan, and B. M. Wotton, 2001: Fire, climate change, carbon and fuel management in the Canadian boreal forest. Int. J. Wildland Fire, 10:405413.

    • Search Google Scholar
    • Export Citation
  • Anfossi, D., S. Sandroni, and S. Viarengo, 1991: Tropospheric ozone in the ninetenth century: The Moncalieri series. J. Geophys. Res., 96:1734917352.

    • Search Google Scholar
    • Export Citation
  • Berntsen, T., I. S. A. Isaksen, J. S. Fuglestvedt, G. Myhre, T. A. Larsen, F. Stordal, R. S. Freckleton, and K. P. Shine, 1997: Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing. J. Geophys. Res., 102:2123921280.

    • Search Google Scholar
    • Export Citation
  • Berntsen, T., I. S. A. Isaksen, G. Myhre, and F. Stordal, 2000: Time evolution of tropospheric ozone and its radiative forcing. J. Geophys. Res., 105:89158930.

    • Search Google Scholar
    • Export Citation
  • Brasseur, G. P., J. T. Kiehl, J-F. Müller, T. Schneider, C. Granier, X. Tie, and D. Hauglustaine, 1998: Past and future changes in global tropospheric ozone: Impact on radiative forcing. Geophys. Res. Lett., 25:38073810.

    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., 1988: Tropopsheric ozone: An overview. Tropospheric Ozone, I. S. A. Isaksen, Ed., Reidel, Dordrecht, 3–32.

  • Dlugokencky, E. J., L. P. Steele, P. M. Lang, and K. A. Masarie, 1994: The growth rate and distribution of atmospheric methane. J. Geophys. Res., 99:1702117043.

    • Search Google Scholar
    • Export Citation
  • European Commission 2003: Ozone-climate interactions. Air Pollution Res. Rep. 81, Directorate General for Research, Environment and Sustainable Development Programme, EUR 20623, 143 pp.

  • Fiore, A. M., D. J. Jacob, B. D. Field, D. G. Streets, S. D. Fernandes, and C. Jang, 2002: Linking ozone pollution to climate change: The case for controlling methane. Geophys. Res. Lett., 29.1919, doi:10.1029/2002GL015601.

    • Search Google Scholar
    • Export Citation
  • Flannigan, M. D., B. J. Stocks, and B. M. Wotton, 2000: Climate change and forest fires. Sci. Total Environ., 262:221229.

  • Gauss, M., Coauthors 2003: Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere. J. Geophys. Res., 108.4292, doi:10.1029/2002JD002624.

    • Search Google Scholar
    • Export Citation
  • GLOBALVIEW-CH4 2001: Cooperative Atmospheric Data Integration Project—Methane. NOAA/CMDL, Boulder, CO, CD-ROM. [Available online at ftp.cmdl.noaa.gov/ccg/ch4/GLOBALVIEW.].

  • Grenfell, J. L., D. T. Shindell, and V. Grewe, 2003: Sensitivity studies of oxidative changes in the troposphere in 2100 using the GISS GCM. Atmos. Chem. Phys., 3:12671283.

    • Search Google Scholar
    • Export Citation
  • Grewe, V., M. Dameris, R. Hein, R. Sausen, and B. Steil, 2001: Future changes of the atmospheric composition and the impact of climate change. Tellus, 53B:103121.

    • Search Google Scholar
    • Export Citation
  • Grewe, V., M. Dameris, C. Fichter, and R. Sausen, 2002: Impact of aircraft NOx emissions. Part 1: Interactively coupled climate-chemistry simulations and sensitivities to climate-chemistry feedback, lightning and model resolution. Meteor. Z., 11:177186.

    • Search Google Scholar
    • Export Citation
  • Guenther, A., Coauthors 1995: A global model of natural volatile organic compound emissions. J. Geophys. Res., 100:88738892.

  • Hack, J. J., 1994: Parameterization of moist convection in the National Center for Atmospheric Research Community Climate Model (CCM). J. Geophys. Res., 99:55415568.

    • Search Google Scholar
    • Export Citation
  • Hauglustaine, D. A. and G. P. Brasseur, 2001: Evolution of tropospheric ozone under anthropogenic activities and associated radiative forcing of climate. J. Geophys. Res., 106:3233732360.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M. and B. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6:18251842.

    • Search Google Scholar
    • Export Citation
  • Horowitz, L., Coauthors 2003: A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. J. Geophys. Res., 108.4784, doi:10.1029/2002JD002853.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Johnson, C. E., W. J. Collins, D. S. Stevenson, and R. G. Derwent, 1999: Relative roles of climate and emissions changes on future tropospheric oxidant concentrations. J. Geophys. Res., 104:1863118645.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J-F., P. Hess, L. Emmons, L. Buja, W. Washington, and C. Granier, 2005: Tropospheric ozone evolution between 1890 and 1990. J. Geophys. Res., 110.D08304, doi:10.1029/2004JD005537.

    • Search Google Scholar
    • Export Citation
  • Lathière, J., D. A. Hauglustaine, N. De Noblet-Ducoudre, G. Krinner, and G. Folberth, 2005: Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model. Geophys. Res. Lett., 32.L20818, doi:10.1029/2005GL024164.

    • Search Google Scholar
    • Export Citation
  • Latif, M., Coauthors 2004: Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Climate, 17:16051614.

    • Search Google Scholar
    • Export Citation
  • Lelieveld, J. and R. van Dorland, 1995: Model simulations of ozone chemistry changes in the troposphere and consequent radiative forcing of climate during industrialization. Atmospheric Ozone As a Climate Gas, W. C. Wang and I. S. A. Isaksen, Eds., NATO ASI Series, Vol. 32, Springer-Verlag, 227–258.

    • Search Google Scholar
    • Export Citation
  • Li, Q. B., Coauthors 2002: Transatlantic transport of pollution and its effects on surface ozone in Europe and North America. J. Geophys. Res., 107.4166, doi:10.1029/2001JD001422.

    • Search Google Scholar
    • Export Citation
  • Lin, S. J. and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport schemes. Mon. Wea. Rev., 124:20462070.

  • Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5:91127.

    • Search Google Scholar
    • Export Citation
  • Mickley, L. J., P. P. Murti, D. J. Jacob, J. A. Logan, D. Rind, and D. Koch, 1999: Radiative forcing from tropospheric ozone calculated with a unified chemistry-climate model. J. Geophys. Res., 104:3015330172.

    • Search Google Scholar
    • Export Citation
  • Mickley, L. J., D. J. Jacob, B. D. Field, and D. Rind, 2004: Effects of future climate change on regional air pollution episodes in the United States. Geophys. Res. Lett., 31.L24103, doi:10.1029/2004GL021216.

    • Search Google Scholar
    • Export Citation
  • Murazaki, K. and P. Hess, 2006: How does climate change contribute to surface ozone change over the United States? J. Geophys. Res., 111.D05301, doi:10.1029/2005JD005873.

    • Search Google Scholar
    • Export Citation
  • Pavelin, E. G., C. E. Johnson, S. Rughooputh, and R. Toumi, 1999: Evaluation of pre-industrial surface ozone measurements made using Schonbein’s method. Atmos. Environ., 33:919929.

    • Search Google Scholar
    • Export Citation
  • Prather, M., Coauthors 2003: Fresh air in the 21st century? Geophys. Res. Lett., 30.1100, doi:10.1029/2002GL016285.

  • Price, C. and D. Rind, 1993: What determines the cloud-to-ground lightning fraction in thunderstorms? Geophys. Res. Lett., 20:463466.

    • Search Google Scholar
    • Export Citation
  • Price, C. and D. Rind, 1994: Possible implications of global climate change on global lightning distributions and frequencies. J. Geophys. Res., 99 (D5):1082310832.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., N. M. Mahowald, and B. E. Eaton, 1997: Representations of transport, convection and the hydrologic cycle in chemical transport models: Implications for the modeling of short lived and soluble species. J. Geophys. Res., 102:2812728138.

    • Search Google Scholar
    • Export Citation
  • Rind, D., J. Lerner, and C. McLinden, 2001: Changes of tracer distribution in the doubled CO2 climate. J. Geophys. Res., 106:2806128079.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., Coauthors 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Rep. 349, Max Planck Institute for Meteorology, Hamburg, Germany, 349 pp.

  • Roeckner, E., Coauthors 2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate, 19:37713791.

    • Search Google Scholar
    • Export Citation
  • Sanderson, M. G., C. D. Jones, W. J. Collins, C. E. Johnson, and R. G. Derwent, 2003: Effect of climate change on isoprene emissions and surface ozone levels. Geophys. Res. Lett., 30.1936, doi:10.1029/2003GL017642.

    • Search Google Scholar
    • Export Citation
  • Shallcross, D. E. and P. S. Monks, 2000: New directions: AQ role for isoprene in biosphere-climate-chemistry feedbacks. Atmos. Environ., 34:16591660.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., G. A. Schmidt, R. L. Miller, and D. Rind, 2001: Northern Hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing. J. Geophys. Res., 106:71937210.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., G. Faluvegi, and N. Bell, 2003: Pre-industrial-to-present-day radiative forcing by tropopsheric ozone from improved simulations with the GISS chemistry-climate GCM. Atmos. Chem. Phys., 3:16751702.

    • Search Google Scholar
    • Export Citation
  • Stevenson, D. S., C. E. Johnson, W. J. Collins, R. G. Derwent, K. P. Shine, and J. M. Edwards, 1998: Evolution of tropospheric ozone radiative forcing. Geophys. Res. Lett., 25:38193822.

    • Search Google Scholar
    • Export Citation
  • Stevenson, D. S., C. E. Johnson, W. J. Collins, R. G. Derwent, and J. M. Edwards, 2000: Future estimates of tropospheric ozone radiative forcing and methane turnover—The impact of climate change. Geophys. Res. Lett., 27:20732076.

    • Search Google Scholar
    • Export Citation
  • Stevenson, D., R. Doherty, M. Sanderson, C. Johnson, B. Collins, and D. Derwent, 2005: Impacts of climate change and variability on tropopsheric ozone and its precursors. Faraday Discuss., 130:117.

    • Search Google Scholar
    • Export Citation
  • Stocks, B. J., Coauthors 1998: Climate change and forest fire potential in Russian and Canadian boreal forests. Climate Change, 38:113.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. M., K. B. Hogan, and J. S. Hoffman, 1992: Methane reductions—Implications for global warming and atmospheric chemical change. Atmos. Environ., 26A:26652668.

    • Search Google Scholar
    • Export Citation
  • van Dorland, R., F. J. Dentener, and J. Lelieveld, 1997: Radiative forcing due to tropospheric ozone and sulfate aerosols. J. Geophys. Res., 102:2807928100.

    • Search Google Scholar
    • Export Citation
  • Volz, A. and D. Kley, 1988: Evaluation of the Montsouris series of ozone measurements made in the nineteenth century. Nature, 332:240242.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. and D. J. Jacob, 1998: Anthropogenic forcing on tropospheric O3 and OH since preindustrial times. J. Geophys. Res., 103:1075710768.

    • Search Google Scholar
    • Export Citation
  • Yienger, J. J. and H. Levy II, 1995: Empirical model of global soil-biogenic NOx emissions. J. Geophys. Res., 100:1144711464.

  • Zeng, G. and J. A. Pyle, 2003: Changes in tropospheric ozone between 2000 and 2100 modeled in a chemistry-climate model. Geophys. Res. Lett., 30.1392, doi:10.1029/2002GL016708.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J. and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33:407446.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1459 275 38
PDF Downloads 893 196 36