ENSO Evolution and Teleconnections in IPCC’s Twentieth-Century Climate Simulations: Realistic Representation?

Renu Joseph Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Renu Joseph in
Current site
Google Scholar
PubMed
Close
and
Sumant Nigam Department of Atmospheric and Oceanic Science, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Sumant Nigam in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study focuses on the assessment of the spatiotemporal structure of ENSO variability and its winter climate teleconnections to North America in the Intergovernmental Panel on Climate Change’s (IPCC) Fourth Assessment Report (AR4) simulations of twentieth-century climate. The 1950–99 period simulations of six IPCC models are analyzed in an effort to benchmark models in the simulation of this leading mode of interannual variability: the Geophysical Fluid Dynamics Laboratory (GFDL) Coupled Model version 2.1 (CM2.1), the coupled ocean–atmosphere model of the Goddard Institute for Space Studies (GISS-EH), the NCAR Community Climate System Model version 3 (CCSM3), the NCAR Parallel Coupled Model (PCM), the Hadley Centre Coupled Atmosphere–Ocean General Circulation Model version 3 (HadCM3), and version 3.2 of the Model for Interdisciplinary Research on Climate at high resolution [MIROC3.2 (hires)].

The standard deviation of monthly SST anomalies is maximum in the Niño-3 region in all six simulations, indicating progress in the modeling of ocean–atmosphere variability. The broad success in modeling ENSO’s SST footprint—quite realistic in CCSM3—is however tempered by the difficulties in modeling ENSO evolution: for example, the biennial oscillation in CCSM3 and the lack of regular warm-to-cold phase transition in the MIROC model. The spatiotemporal structure, including seasonal phase locking, is, on the whole, well modeled by HadCM3; but there is room for improvement, notably, in modeling the SST footprint in the western Pacific.

ENSO precipitation anomalies over the tropical Pacific and links to North American winter precipitation are also realistic in the HadCM3 simulation and, to an extent, in PCM. Hydroclimate teleconnections that lean on a stationary component of the flow, such as surface air temperature links, are however not well modeled by HadCM3 since the midlatitude ridge in the ENSO response is incorrectly placed in the simulation; PCM fares better.

The analysis reveals that climate models are improving but are still unable to simulate many features of ENSO variability and its circulation and hydroclimate teleconnections to North America. Predicting regional climate variability/change remains an onerous burden on models.

Corresponding author address: Sumant Nigam, 3419 Computer and Space Sciences Bldg., University of Maryland, College Park, College Park, MD 20742-2425. Email: nigam@atmos.umd.edu

Abstract

This study focuses on the assessment of the spatiotemporal structure of ENSO variability and its winter climate teleconnections to North America in the Intergovernmental Panel on Climate Change’s (IPCC) Fourth Assessment Report (AR4) simulations of twentieth-century climate. The 1950–99 period simulations of six IPCC models are analyzed in an effort to benchmark models in the simulation of this leading mode of interannual variability: the Geophysical Fluid Dynamics Laboratory (GFDL) Coupled Model version 2.1 (CM2.1), the coupled ocean–atmosphere model of the Goddard Institute for Space Studies (GISS-EH), the NCAR Community Climate System Model version 3 (CCSM3), the NCAR Parallel Coupled Model (PCM), the Hadley Centre Coupled Atmosphere–Ocean General Circulation Model version 3 (HadCM3), and version 3.2 of the Model for Interdisciplinary Research on Climate at high resolution [MIROC3.2 (hires)].

The standard deviation of monthly SST anomalies is maximum in the Niño-3 region in all six simulations, indicating progress in the modeling of ocean–atmosphere variability. The broad success in modeling ENSO’s SST footprint—quite realistic in CCSM3—is however tempered by the difficulties in modeling ENSO evolution: for example, the biennial oscillation in CCSM3 and the lack of regular warm-to-cold phase transition in the MIROC model. The spatiotemporal structure, including seasonal phase locking, is, on the whole, well modeled by HadCM3; but there is room for improvement, notably, in modeling the SST footprint in the western Pacific.

ENSO precipitation anomalies over the tropical Pacific and links to North American winter precipitation are also realistic in the HadCM3 simulation and, to an extent, in PCM. Hydroclimate teleconnections that lean on a stationary component of the flow, such as surface air temperature links, are however not well modeled by HadCM3 since the midlatitude ridge in the ENSO response is incorrectly placed in the simulation; PCM fares better.

The analysis reveals that climate models are improving but are still unable to simulate many features of ENSO variability and its circulation and hydroclimate teleconnections to North America. Predicting regional climate variability/change remains an onerous burden on models.

Corresponding author address: Sumant Nigam, 3419 Computer and Space Sciences Bldg., University of Maryland, College Park, College Park, MD 20742-2425. Email: nigam@atmos.umd.edu

Save
  • Achutarao, K., and K. R. Sperber, 2002: Simulation of the El Niño Southern Oscillation: Results from the Coupled Model Intercomparison Project. Climate Dyn., 19 , 191209.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., 1982: The relationship between interannual variability in the 200 mb tropical wind field and the Southern Oscillation. Mon. Wea. Rev., 110 , 13931404.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18 , 820829.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., G. Flato, and D. Ramsden, 2000: A transient climate change simulation with greenhouse gas and aerosol forcing: Projected climate for the 21st century. Climate Dyn., 16 , 427450.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1999: Impacts of 1997–98 El Niño generated weather in the United States. Bull. Amer. Meteor. Soc., 80 , 18191827.

  • Collins, M., and Coauthors, 2005: El Niño or La Niña like climate change? Climate Dyn., 24 , 89104.

  • Deser, C., and J. M. Wallace, 1990: Large-scale atmospheric circulation features of warm and cold episodes in the tropical Pacific. J. Climate, 3 , 12541281.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Capotondi, R. Saravanan, and A. Phillips, 2006: Tropical Pacific and Atlantic climate variability in CCSM3. J. Climate, 19 , 24512481.

    • Search Google Scholar
    • Export Citation
  • DeWeaver, E., and S. Nigam, 2000: Do stationary waves drive the zonal-mean jet anomalies of the northern winter? J. Climate, 13 , 21602175.

    • Search Google Scholar
    • Export Citation
  • DeWeaver, E., and S. Nigam, 2004: On the forcing of ENSO teleconnections by anomalous heating and cooling. J. Climate, 17 , 32253235.

  • Fedorov, A. V., and S. G. Philander, 1997: Is El Niño changing? Science, 288 , 19972002.

  • Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238 , 657659.

    • Search Google Scholar
    • Export Citation
  • Green, P. M., D. M. Legler, C. J. Miranda, and J. J. O’Brien, 1997: The North American climate patterns associated with the El Niño–Southern Oscillation. COAPS Project Rep. Series 97-1, 8 pp. [Available online at http://www.coaps.fsu.edu/lib/booklet/.].

  • Hoerling, M. P., M. Ting, and A. Kumar, 1995: Zonal flow–stationary wave relationship during El Niño: Implications for seasonal forecasting. J. Climate, 8 , 18381852.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109 , 813829.

    • Search Google Scholar
    • Export Citation
  • Joseph, R., M. Ting, and P. J. Kushner, 2004: The global stationary wave response to climate change in a coupled GCM. J. Climate, 17 , 540555.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kiladis, G. N., and H. F. Diaz, 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2 , 10691090.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and P. S. Schopf, 1998: Decadal variability in ENSO predictability and prediction. J. Climate, 11 , 28042822.

  • Latif, M., and Coauthors, 2001: ENSIP: The El Niño Simulation Intercomparison Project. Climate Dyn., 18 , 255272.

  • Meehl, G. A., and W. M. Washington, 1996: El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature, 382 , 5660.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., 1990: On the structure of variability of the observed tropospheric and stratospheric zonal-mean zonal wind. J. Atmos. Sci., 47 , 17991813.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., 2003: Teleconnections. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. A. Pyle, and J. A. Curry, Eds., Academic Press, 2243–2269.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., and H-S. Shen, 1993: Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian Oceans. Part I: COADS observations. J. Climate, 6 , 657676.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., C. Chung, and E. DeWeaver, 2000: ENSO diabatic heating in ECMWF and NCEP–NCAR reanalyses, and NCAR CCM3 simulation. J. Climate, 13 , 31523171.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., and J. J. Yienger, 1996: Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate, 9 , 27512767.

    • Search Google Scholar
    • Export Citation
  • PCMDI, cited. 2005a: Model documentation for GFDL CM2.1. [Available online at http://www-pcmdi.llnl.gov/ipcc/modeldocumentation/GFDL-cm2.htm.].

  • PCMDI, cited. 2005b: Model documentation for GISS-EH. [Available online at http://www-pcmdi.llnl.gov/ipcc/modeldocumentation/GISS-E.htm.].

  • PCMDI, cited. 2005c: Model documentation for CCSM3. [Available online at http://www-pcmdi.llnl.gov/ipcc/modeldocumentation/CCSM3.htm.].

  • PCMDI, cited. 2005d: Model documentation for PCM. [Available online at http://www-pcmdi.llnl.gov/ipcc/modeldocumentation/PCM.htm.].

  • PCMDI, cited. 2005e: Model documentation for MIROC3.2 (hires). [Available online at http://www-pcmdi.llnl.gov/ipcc/modeldocumentation/MIROC3.2 hires.htm.].

  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110 , 354384.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Rev., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115 , 16061626.

    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., and D. Battisti, 2001: A linear dynamical model of ENSO. Part II: Analysis. J. Climate, 14 , 445466.

  • Timmermann, A., J. Oberhuber, A. Bacher, M. Esch, M. Latif, and E. Roeckner, 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398 , 694696.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and P. Webster, 1998: The annual cycle of persistence in the El Niño Southern Oscillation. Quart. J. Roy. Meteor. Soc., 124 , 19852004.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78 , 27712777.

  • Trenberth, K. E., and D. P. Stepaniak, 2001: Indices of El Niño evolution. J. Climate, 14 , 16971701.

  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N. C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103 , 1429114324.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • van Oldenborgh, G. J., S. Philip, and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean. Sci., 1 , 8195.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109 , 784812.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1995: Interdecadal changes in El Niño onset in the last four decades. J. Climate, 8 , 267284.

  • Wittenberg, A. T., A. Rosati, N-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19 , 698722.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 669 323 16
PDF Downloads 278 90 5