Tropical Indian Ocean Variability in the IPCC Twentieth-Century Climate Simulations

N. H. Saji IPRC, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by N. H. Saji in
Current site
Google Scholar
PubMed
Close
,
S-P. Xie IPRC, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by S-P. Xie in
Current site
Google Scholar
PubMed
Close
, and
T. Yamagata University of Tokyo and FRSGC, Tokyo, Japan

Search for other papers by T. Yamagata in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The twentieth-century simulations using by 17 coupled ocean–atmosphere general circulation models (CGCMs) submitted to the Intergovernmental Panel on Climate Change’s Fourth Assessment Report (IPCC AR4) are evaluated for their skill in reproducing the observed modes of Indian Ocean (IO) climate variability. Most models successfully capture the IO’s delayed, basinwide warming response a few months after El Niño–Southern Oscillation (ENSO) peaks in the Pacific. ENSO’s oceanic teleconnection into the IO, by coastal waves through the Indonesian archipelago, is poorly simulated in these models, with significant shifts in the turning latitude of radiating Rossby waves. In observations, ENSO forces, by the atmospheric bridge mechanism, strong ocean Rossby waves that induce anomalies of SST, atmospheric convection, and tropical cyclones in a thermocline dome over the southwestern tropical IO. While the southwestern IO thermocline dome is simulated in nearly all of the models, this ocean Rossby wave response to ENSO is present only in a few of the models examined, suggesting difficulties in simulating ENSO’s teleconnection in surface wind.

A majority of the models display an equatorial zonal mode of the Bjerknes feedback with spatial structures and seasonality similar to the Indian Ocean dipole (IOD) in observations. This success appears to be due to their skills in simulating the mean state of the equatorial IO. Corroborating the role of the Bjerknes feedback in the IOD, the thermocline depth, SST, precipitation, and zonal wind are mutually positively correlated in these models, as in observations. The IOD–ENSO correlation during boreal fall ranges from −0.43 to 0.74 in the different models, suggesting that ENSO is one, but not the only, trigger for the IOD.

* International Pacific Research Center Contribution Number 362 and School of Ocean and Earth Science and Technology Contribution Number 6708

Corresponding author address: N. H. Saji, International Pacific Research Center, 2525 Correa Rd., University of Hawaii at Manoa, Honolulu, HI 96822. Email: saji@hawaii.edu

Abstract

The twentieth-century simulations using by 17 coupled ocean–atmosphere general circulation models (CGCMs) submitted to the Intergovernmental Panel on Climate Change’s Fourth Assessment Report (IPCC AR4) are evaluated for their skill in reproducing the observed modes of Indian Ocean (IO) climate variability. Most models successfully capture the IO’s delayed, basinwide warming response a few months after El Niño–Southern Oscillation (ENSO) peaks in the Pacific. ENSO’s oceanic teleconnection into the IO, by coastal waves through the Indonesian archipelago, is poorly simulated in these models, with significant shifts in the turning latitude of radiating Rossby waves. In observations, ENSO forces, by the atmospheric bridge mechanism, strong ocean Rossby waves that induce anomalies of SST, atmospheric convection, and tropical cyclones in a thermocline dome over the southwestern tropical IO. While the southwestern IO thermocline dome is simulated in nearly all of the models, this ocean Rossby wave response to ENSO is present only in a few of the models examined, suggesting difficulties in simulating ENSO’s teleconnection in surface wind.

A majority of the models display an equatorial zonal mode of the Bjerknes feedback with spatial structures and seasonality similar to the Indian Ocean dipole (IOD) in observations. This success appears to be due to their skills in simulating the mean state of the equatorial IO. Corroborating the role of the Bjerknes feedback in the IOD, the thermocline depth, SST, precipitation, and zonal wind are mutually positively correlated in these models, as in observations. The IOD–ENSO correlation during boreal fall ranges from −0.43 to 0.74 in the different models, suggesting that ENSO is one, but not the only, trigger for the IOD.

* International Pacific Research Center Contribution Number 362 and School of Ocean and Earth Science and Technology Contribution Number 6708

Corresponding author address: N. H. Saji, International Pacific Research Center, 2525 Correa Rd., University of Hawaii at Manoa, Honolulu, HI 96822. Email: saji@hawaii.edu

Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lazante, N-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., S-P. Xie, J-P. McCreary, and R. Murtugudde, 2005: Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18 , 302319.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2001: Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett., 28 , 44994502.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J. J. Luo, S. Masson, P. Delecluse, S. Gualdi, and A. Navarra, 2005: Paramount impact of the Indian Ocean dipole on the east African short rains: A CGCM study. J. Climate, 18 , 45144530.

    • Search Google Scholar
    • Export Citation
  • Black, E., J. Slingo, and K. R. Sperber, 2003: An observational study of the relationship between excessively strong short rains in coastal east Africa and Indian Ocean SST. Mon. Wea. Rev., 131 , 7494.

    • Search Google Scholar
    • Export Citation
  • Cadet, D. L., 1985: The Southern Oscillation over the Indian Ocean. J. Climatol., 5 , 189212.

  • Cai, W., H. H. Hendon, and G. Meyers, 2005: Indian Ocean dipolelike variability in the CSIRO Mark 3 coupled climate model. J. Climate, 18 , 14491468.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. Chepurin, X. Cao, and B. Giese, 2000: A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30 , 294309.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and X. Liu, 1994: Interannual sea level in the northern and eastern Indian Ocean. J. Phys. Oceanogr., 24 , 12241235.

  • Davey, M. K., and Coauthors, 2002: STOIC: A study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18 , 403420.

    • Search Google Scholar
    • Export Citation
  • Delworth, T., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the Tropics and North Pacific during boreal winter since 1900. J. Climate, 17 , 31093124.

    • Search Google Scholar
    • Export Citation
  • Diansky, N., and E. Volodin, 2002: Simulation of present-day climate with a coupled atmosphere–ocean general circulation model. Izv. Atmos. Oceanic Phys., 38 , 732747.

    • Search Google Scholar
    • Export Citation
  • Drosdowsky, W., 1993: Potential predictability of winter rainfall over southern and eastern Australia using Indian Ocean sea-surface temperature anomalies. Aust. Meteor. Mag., 42 , 16.

    • Search Google Scholar
    • Export Citation
  • England, M., C. C. Ummenhofer, and A. Santoso, 2006: Interannual rainfall extremes over southwest western Australia linked to Indian Ocean climate variability. J. Climate, 19 , 19481969.

    • Search Google Scholar
    • Export Citation
  • Fischer, A., P. Terray, E. Guilyardi, S. Gualdi, and P. Delecluse, 2005: Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. J. Climate, 18 , 34283449.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and G. Boer, 2001: Warming asymmetry in climate change simulations. Geophys. Res. Lett., 28 , 195198.

  • Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302 , 10271030.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and N. E. Graham, 1999: The importance of the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa. J. Geophys. Res., 104 , 1909919116.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., and T. Fichefet, 1999: Importance of ice–ocean interactions for the global ocean circulation: A model study. J. Geophys. Res., 104 , 2333723355.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., C. Cooper, C. A. Senior, H. T. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16 , 147168.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S. E., E. Guilyardi, A. Navarra, S. Masina, and P. Delecluse, 2003: The interannual variability in the Indian Ocean as simulated by a CGCM. Climate Dyn., 20 , 567582.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Hurrell, T. Xu, G. T. Bates, and A. Phillips, 2004: Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming. Climate Dyn., 23 , 391405.

    • Search Google Scholar
    • Export Citation
  • Iizuka, S., T. Matsuura, and T. Yamagata, 2000: The Indian Ocean SST dipole simulated in a coupled general circulation model. Geophys. Res. Lett., 27 , 33693372.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and P. R. Gent, 2004: The Community Climate System Model, version 2. J. Climate, 17 , 36663682.

  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12 , 917932.

    • Search Google Scholar
    • Export Citation
  • Lareef, Z., A. S. Rao, and T. Yamagata, 2003: Modulation of Sri Lankan Maha rainfall by the Indian Ocean dipole. Geophys. Res. Lett., 30 .1063, doi:10.1029/2002GL015639.

    • Search Google Scholar
    • Export Citation
  • Latif, M., D. Dommenget, and M. Dima, 1999: The role of Indian Ocean sea surface temperature in forcing east African rainfall anomalies during December–January 1997/98. J. Climate, 12 , 34973504.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 2004: Coupled GCM simulation of atmosphere–ocean variability associated with the zonally asymmetric SST changes in the tropical Indian Ocean. J. Climate, 17 , 245265.

    • Search Google Scholar
    • Export Citation
  • Li, J., and A. J. Clarke, 2004: Coastline direction, interannual flow, and the strong El Niño currents along Australia’s nearly zonal southern coast. J. Phys. Oceanogr., 34 , 23732381.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, and J. Loschnigg, 2003: Coupled ocean–atmosphere dynamical processes in the tropical Indian and Pacific Oceans and the TBO. J. Climate, 16 , 21382158.

    • Search Google Scholar
    • Export Citation
  • Meehl, G., W. Washington, W. Collins, J. Arblaster, A. Hu, L. Buja, W. Strand, and H. Teng, 2005: How much more global warming and sea level rise? Science, 307 , 17691772.

    • Search Google Scholar
    • Export Citation
  • Meyers, G., 1996: Variation of Indonesian throughflow and the El Niño–Southern Oscillation. J. Geophys. Res., 101 , 1225512263.

  • Murtugudde, R. G., J. P. McCreary, and A. J. Busalacchi, 2000: Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J. Geophys. Res., 105 , 32953306.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and Coauthors, 1998: ENSO theory. J. Geophys. Res., 103 , 1426114290.

  • Nicholls, N., 1989: Sea surface temperatures and Australian winter rainfall. J. Climate, 2 , 965973.

  • Nigam, S., and H-S. Shen, 1993: Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian Oceans. Part I: COADS observations. J. Climate, 6 , 17501771.

    • Search Google Scholar
    • Export Citation
  • Nozawa, T., T. Nagashima, H. Shiogama, and S. A. Crooks, 2005: Detecting natural influence on surface air temperatures change in the early twenthieth century. Geophys. Res. Lett., 23 .L20719, doi:10.1029/2005GL023540.

    • Search Google Scholar
    • Export Citation
  • Okumuara, Y., and S-P. Xie, 2004: Interaction of the Atlantic equatorial cold tongue and African monsoon. J. Climate, 17 , 35883601.

  • Pan, H. Y., and A. H. Oort, 1983: Global climate variations associated with sea surface temperature anomalies in the eastern equatorial Pacific Ocean for the 1958–1973 period. Mon. Wea. Rev., 111 , 12441258.

    • Search Google Scholar
    • Export Citation
  • Perigaud, C., and J. McCreary, 2003: Influence of interannual rainfall anomalies on sea level variations in the tropical Indian Ocean. J. Geophys. Res., 108 .3335, doi:10.1029/2003JC001857.

    • Search Google Scholar
    • Export Citation
  • Potemra, J. T., 2001: The potential role of equatorial Pacific winds on southern tropical Indian Ocean Rossby waves. J. Geophys. Res., 106 , 24072422.

    • Search Google Scholar
    • Export Citation
  • Qu, T., and G. Meyers, 2005: Seasonal variation of barrier layer in the southeastern tropical Indian Ocean. J. Geophys. Res., 110 .C11003, doi:10.1029/2004JC002816.

    • Search Google Scholar
    • Export Citation
  • Rao, A. S., S. K. Behera, Y. Masumoto, and T. Yamagata, 2002: Interannual variability in the subsurface tropical Indian Ocean. Deep-Sea Res., 49B , 15491572.

    • Search Google Scholar
    • Export Citation
  • Rao, S., and T. Yamagata, 2004: Abrupt termination of Indian Ocean dipole events in response to intraseasonal disturbances. Geophys. Res. Lett., 31 .L19306, doi:10.1029/2004GL020842.

    • Search Google Scholar
    • Export Citation
  • Rao, S., and S. Behera, 2005: Subsurface influence on SST in the tropical Indian Ocean: Structure and interannual variability. Dyn. Atmos. Oceans, 39 , 103135.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, P. Frich, E. B. Horton, C. K. Folland, and L. V. Alexander, 2000: SST and sea-ice fields for ERA40. Proc. Second WCRP Int. Conf. on Reanalyses, Reading, United Kingdom, WCRP-109, WMO/TD-No. 985, 18–21.

  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Russell, G., J. Miller, and D. Rind, 1995: A coupled atmosphere–ocean model for transient climate change studies. Atmos.–Ocean, 33 , 683730.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003a: Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Res., 25 , 151169.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003b: Structure of SST and surface wind variability during Indian Ocean dipole mode years: COADS observations. J. Climate, 16 , 27352751.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401 , 360363.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., T. Ambrizzi, and S. Simone, 2005a: Indian Ocean Dipole mode events and austral surface temperature anomalies. Dyn. Atmos. Oceans, 39 , 87101.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G., and Coauthors, 2006: Present-day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19 , 153–192.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and M. A. Alexander, 2004: Surface and subsurface dipole variability in the Indian Ocean and its relation with ENSO. Deep-Sea Res., 51 , 619635.

    • Search Google Scholar
    • Export Citation
  • Spencer, H., R. Sutton, J. Slingo, M. Roberts, and E. Black, 2005: Indian Ocean climate and dipole variability in Hadley Centre coupled GCMs. J. Climate, 18 , 22862307.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A. J., J. Oberhuber, A. Bacher, M. Esch, M. Latif, and E. Roeckner, 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398 , 694697.

    • Search Google Scholar
    • Export Citation
  • Venzke, S., M. Latif, and A. Villwock, 2000: The coupled GCM ECHO-2. Part II: Indian Ocean response to ENSO. J. Climate, 13 , 13711387.

    • Search Google Scholar
    • Export Citation
  • Verschell, M. A., J. C. Kindle, and J. J. O’Brien, 1995: Effects of Indo-Pacific throughflow on the upper tropical Pacific and Indian Oceans. J. Geophys. Res., 100 , 1840918420.

    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., 2005: Forecasting extreme events in the tropical Indian Ocean sector climate. Dyn. Atmos. Oceans, 39 , 137151.

  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impact on Asian–Australian monsoon variability. J. Climate, 16 , 11951211.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401 , 356360.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S., and G. Meyers, 2004: An intersection of oceanic waveguides: Variability in the Indonesian throughflow region. J. Phys. Oceanogr., 34 , 12321253.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2004: Understanding the impacts of the Indian Ocean on ENSO in a coupled GCM. J. Climate, 17 , 40194031.

  • Xie, P., and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9 , 840858.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., Y. Tanimoto, H. Noguchi, and T. Matsuno, 1999: How and why climate variability differs between the tropical Pacific and the Atlantic. Geophys. Res. Lett., 26 , 16091612.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15 , 864878.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., S. K. Behera, J. J. Luo, S. Masson, M. R. Jury, and S. A. Rao, 2004: Coupled ocean–atmosphere variability in the tropical Indian Ocean. Earth Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 189–212.

  • Yu, J. Y., C. R. Mechoso, J. C. McWilliams, and A. Arakawa, 2002: Impacts of Indian Ocean on ENSO cycles. Geophys. Res. Lett., 29 .1204, doi:10.1029/2001GL014098.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., X. Zhang, and Y. Guo, 2004: Global coupled ocean–atmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21 , 444455.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2001: The New Meteorological Research Institute coupled GCM (MRI–CGCM2)—Model climate and variability. Pap. Meteor. Geophys., 51 , 4788.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the Microwave Sounding Unit. J. Climate, 7 , 17191736.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1503 461 41
PDF Downloads 768 177 19