Can CGCMs Simulate the Twentieth-Century “Warming Hole” in the Central United States?

Kenneth E. Kunkel Illinois State Water Survey, Champaign, Illinois

Search for other papers by Kenneth E. Kunkel in
Current site
Google Scholar
PubMed
Close
,
Xin-Zhong Liang Illinois State Water Survey, Champaign, Illinois

Search for other papers by Xin-Zhong Liang in
Current site
Google Scholar
PubMed
Close
,
Jinhong Zhu Illinois State Water Survey, Champaign, Illinois

Search for other papers by Jinhong Zhu in
Current site
Google Scholar
PubMed
Close
, and
Yiruo Lin Illinois State Water Survey, Champaign, Illinois

Search for other papers by Yiruo Lin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The observed lack of twentieth-century warming in the central United States (CUS), denoted here as the “warming hole,” was examined in 55 simulations driven by external historical forcings and in 19 preindustrial control (unforced) simulations from 18 coupled general circulation models (CGCMs). Twentieth-century CUS trends were positive for the great majority of simulations, but were negative, as observed, for seven simulations. Only a few simulations exhibited the observed rapid rate of warming (cooling) during 1901–40 (1940–79). Those models with multiple runs (identical forcing but different initial conditions) showed considerable intramodel variability with trends varying by up to 1.8°C century−1, suggesting that internal dynamic variability played a major role at the regional scale. The wide range of trend outcomes, particularly for those models with multiple runs, and the small number of simulations similar to observations in both the forced and unforced experiments suggest that the warming hole is not a robust response of contemporary CGCMs to the estimated external forcings. A more likely explanation based on these models is that the observed warming hole involves external forcings combined with internal dynamic variability that is much larger than typically simulated.

The observed CUS temperature variations are positively correlated with North Atlantic (NA) sea surface temperatures (SSTs), and both NA SSTs and CUS temperature are negatively correlated with central equatorial Pacific (CEP) SSTs. Most models simulate rather well the connection between CUS temperature and NA SSTs. However, the teleconnections between NA and CEP SSTS and between CEP SSTs and CUS temperature are poorly simulated and the models produce substantially less NA SST variability than observed, perhaps hampering their ability to reproduce the warming hole.

Corresponding author address: Dr. Kenneth Kunkel, Illinois State Water Survey, 2204 Griffith Dr., Champaign, IL 61820-7495. Email: kkunkel@uiuc.edu

Abstract

The observed lack of twentieth-century warming in the central United States (CUS), denoted here as the “warming hole,” was examined in 55 simulations driven by external historical forcings and in 19 preindustrial control (unforced) simulations from 18 coupled general circulation models (CGCMs). Twentieth-century CUS trends were positive for the great majority of simulations, but were negative, as observed, for seven simulations. Only a few simulations exhibited the observed rapid rate of warming (cooling) during 1901–40 (1940–79). Those models with multiple runs (identical forcing but different initial conditions) showed considerable intramodel variability with trends varying by up to 1.8°C century−1, suggesting that internal dynamic variability played a major role at the regional scale. The wide range of trend outcomes, particularly for those models with multiple runs, and the small number of simulations similar to observations in both the forced and unforced experiments suggest that the warming hole is not a robust response of contemporary CGCMs to the estimated external forcings. A more likely explanation based on these models is that the observed warming hole involves external forcings combined with internal dynamic variability that is much larger than typically simulated.

The observed CUS temperature variations are positively correlated with North Atlantic (NA) sea surface temperatures (SSTs), and both NA SSTs and CUS temperature are negatively correlated with central equatorial Pacific (CEP) SSTs. Most models simulate rather well the connection between CUS temperature and NA SSTs. However, the teleconnections between NA and CEP SSTS and between CEP SSTs and CUS temperature are poorly simulated and the models produce substantially less NA SST variability than observed, perhaps hampering their ability to reproduce the warming hole.

Corresponding author address: Dr. Kenneth Kunkel, Illinois State Water Survey, 2204 Griffith Dr., Champaign, IL 61820-7495. Email: kkunkel@uiuc.edu

Save
  • Delworth, T. L., and T. R. Knutson, 2000: Simulation of early 20th century global warming. Science, 287 , 22462250.

  • Folland, C. K., and Coauthors, 2001: Observed climate variability and change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 99–181.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, M. Imhoff, W. Lawrence, D. Easterling, T. Peterson, and T. Karl, 2001: A closer look at United States and global surface temperature change. J. Geophys. Res., 106 , 2394723963.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., and X-L. Liang, 2005: CMIP simulations of the climate in the central United States. J. Climate, 18 , 10161031.

  • Lau, N-C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9 , 20362057.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 2001: Impact of ENSO on SST variability in the North Pacific and North Atlantic: Seasonal dependence and role of extratropical sea–air coupling. J. Climate, 14 , 28462866.

    • Search Google Scholar
    • Export Citation
  • Liang, X-Z., L. Li, K. E. Kunkel, M. Ting, and J. X. L. Wang, 2004: Regional climate model simulation of U.S. precipitation during 1982–2002. Part I: Annual cycle. J. Climate, 17 , 35103528.

    • Search Google Scholar
    • Export Citation
  • Liang, X-Z., J. Pan, J. Zhu, K. E. Kunkel, J. X. L. Wang, and A. Dai, 2006: Regional climate model downscaling of the U.S. summer climate and future change. J. Geophys. Res., 111 .D10108, doi:10.1029/2005JD006685.

    • Search Google Scholar
    • Export Citation
  • Pan, Z., R. W. Arritt, E. S. Takle, W. J. Gutowski Jr., C. J. Anderson, and M. Segal, 2004: Altered hydrologic feedback in a warming climate introduces a “warming hole.”. Geophys. Res. Lett., 31 .L17109, doi:10.1029/2004GL020528.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., E. B. Horton, D. E. Parker, C. K. Folland, and R. B. Hackett, 1996: Version 2.2 of the global sea-ice and sea surface temperature data set, 1903–1994. Climate Tech. Note 74, Hadley Centre for Climate Prediction and Research, U.K. Meteorological Office, 43 pp.

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., R. Reudy, and J. E. Hansen, 2002: On the recent cooling in the east-central United States. J. Geophys. Res., 107 .4748, doi:10.1029/2001JD001577.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., G. Hegerl, and S. Tett, 2000: A comparison of surface air temperature variability in three 1000-yr coupled ocean–atmosphere model integrations. J. Climate, 13 , 513537.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309 , 115118.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1159 196 39
PDF Downloads 314 63 6