Abstract
This study provides an empirical description of intraseasonal rainfall variability within the North American monsoon (NAM) region. Applying particular definitions to historical daily rainfall observations, it demonstrates that distinct intraseasonal rainfall modes exist and that these modes differ considerably from the monsoon core region in northwest Sonora (SON), California, to its northward extension in southeast Arizona (AZ). To characterize intraseasonal rainfall variability (ISV), separate P-mode principal component (PC) analyses were performed for SON and AZ. The results indicate that in each area, much of the ISV in rainfall can be described by three orthogonal modes. The correlations between ISV modes and total seasonal rainfall reinforce the notion of differing behaviors between the monsoon’s core and extension. For SON all three ISV modes exhibit significant correlation with seasonal rainfall, with the strongest relationship in evidence for the ISV mode, which is related to rainfall intensity. For AZ, total rainfall exhibits the strongest correlation with the ISV mode, which emphasizes season length and rainfall consistency. Examination of longer-period behavior in the ISV modes indicates that, for SON, there is a positive linear trend in intensity, but a countervailing trend toward a shorter monsoon season along with less consistent rainfall in the form of shorter wet spells. For AZ, the evidence for trend in the ISV modes is not nearly as compelling, though one of the modes appears to exhibit distinct multidecadal variability. This study also evaluates teleconnectivity between ENSO, the Pacific decadal oscillation (PDO), and the NAM’s intraseasonal rainfall variability. Results indicate that part of the intraseasonal rainfall variability in both SON and AZ is connected to ENSO while only SON exhibits a teleconnection with the long-period fluctuations of the PDO.
Corresponding author address: Phil J. Englehart, 3500 N 57th St., Kansas City, KS 66104. Email: pjenglehart@creighton.edu