Regional Tropical Precipitation Change Mechanisms in ECHAM4/OPYC3 under Global Warming

Chia Chou Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

Search for other papers by Chia Chou in
Current site
Google Scholar
PubMed
Close
,
J. David Neelin Department of Atmospheric Sciences, and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by J. David Neelin in
Current site
Google Scholar
PubMed
Close
,
Jien-Yi Tu Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

Search for other papers by Jien-Yi Tu in
Current site
Google Scholar
PubMed
Close
, and
Cheng-Ta Chen Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan

Search for other papers by Cheng-Ta Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Mechanisms of global warming impacts on regional tropical precipitation are examined in a coupled atmosphere–ocean general circulation model (ECHAM4/OPYC3). The pattern of the regional tropical precipitation changes, once established, tends to persist, growing in magnitude as greenhouse gases increase. The sulfate aerosol induces regional tropical precipitation anomalies similar to the greenhouse gases but with opposite sign, thus reducing the early signal. Evidence for two main mechanisms, the upped-ante and the anomalous gross moist stability (M′) mechanisms (previously proposed in an intermediate complexity model), is found in this more comprehensive coupled general circulation model. Preferential moisture increase occurs in convection zones. The upped-ante mechanism signature of dry advection from nonconvective regions is found in tropical drought regions on the margins of convection zones. Here advection in both the atmospheric boundary layer and lower free troposphere are found to be important, with an additional contribution from horizontal temperature transport in some locations. The signature of the M′ mechanism—moisture convergence due to increased moisture in regions of large mean vertical motion—enhances precipitation within strong convective regions. Ocean dynamical feedbacks can be assessed by net surface flux, the main example being the El Niño–like shift of the equatorial Pacific convection zone. Cloud–radiative feedbacks are found to oppose precipitation anomalies over ocean regions.

* Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Contribution Number 6243

Corresponding author address: Chia Chou, Research Center for Environmental Changes, Academia Sinica, P.O. Box 1-48, Taipei 11529, Taiwan. Email: chiachou@rcec.sinica.edu.tw

Abstract

Mechanisms of global warming impacts on regional tropical precipitation are examined in a coupled atmosphere–ocean general circulation model (ECHAM4/OPYC3). The pattern of the regional tropical precipitation changes, once established, tends to persist, growing in magnitude as greenhouse gases increase. The sulfate aerosol induces regional tropical precipitation anomalies similar to the greenhouse gases but with opposite sign, thus reducing the early signal. Evidence for two main mechanisms, the upped-ante and the anomalous gross moist stability (M′) mechanisms (previously proposed in an intermediate complexity model), is found in this more comprehensive coupled general circulation model. Preferential moisture increase occurs in convection zones. The upped-ante mechanism signature of dry advection from nonconvective regions is found in tropical drought regions on the margins of convection zones. Here advection in both the atmospheric boundary layer and lower free troposphere are found to be important, with an additional contribution from horizontal temperature transport in some locations. The signature of the M′ mechanism—moisture convergence due to increased moisture in regions of large mean vertical motion—enhances precipitation within strong convective regions. Ocean dynamical feedbacks can be assessed by net surface flux, the main example being the El Niño–like shift of the equatorial Pacific convection zone. Cloud–radiative feedbacks are found to oppose precipitation anomalies over ocean regions.

* Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Contribution Number 6243

Corresponding author address: Chia Chou, Research Center for Environmental Changes, Academia Sinica, P.O. Box 1-48, Taipei 11529, Taiwan. Email: chiachou@rcec.sinica.edu.tw

Save
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419 , 224232.

  • Boer, G. J., G. Flato, and D. Ramsden, 2000: A transient climate change simulation with green-house gas and aerosol forcing: Projected climate to the twenty-first century. Climate Dyn., 16 , 427450.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., M. Zhang, B. A. Wielicki, D. F. Young, X. L. Zhou, and Y. Nikitenko, 2001: The influence of the 1998 El Niño upon cloud-radiative forcing over the Pacific warm pool. J. Climate, 14 , 21292137.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17 , 26882701.

  • Chou, C., J. D. Neelin, U. Lohmann, and J. Feichter, 2005: Local and remote impacts of aerosol climate forcing on tropical precipitation. J. Climate, 18 , 46214636.

    • Search Google Scholar
    • Export Citation
  • Dai, A., G. A. Meehl, W. M. Washington, T. M. L. Wigley, and J. M. Arblaster, 2001a: Ensemble simulation of twenty-first century climate changes: Business-as-usual versus CO2 stabilization. Bull. Amer. Meteor. Soc., 82 , 23772388.

    • Search Google Scholar
    • Export Citation
  • Dai, A., T. M. L. Wigley, B. A. Boville, J. T. Kiehl, and L. E. Buja, 2001b: Climates of the twentieth and twenty-first centuries simulated by the NCAR climate system model. J. Climate, 14 , 485519.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and T. R. Knutson, 2000: Simulation of early 20th century global warming. Science, 287 , 22462250.

  • Douville, H., F. Chauvin, S. Planton, J-F. Royer, D. Salas-Mélia, and S. Tyteca, 2002: Sensitivity of the hydrological cycle to increasing amounts of greenhouse gases and aerosol. Climate Dyn., 20 , 4568.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and B. Ruedy, 1995: Long-term changes of the diurnal temperature cycle—Implications about mechanisms of global climate-change. Atmos. Res., 37 , 175209.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., L. A. Moy, and Q. Fu, 2001: Tropical convection and the energy balance at the top of the atmosphere. J. Climate, 14 , 44954511.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25 , 441475.

  • Houghton, J. T., B. A. Callander, and S. K. Varney, 1992: The Supplementary Report to the IPCC Scientific Assessment. Cambridge University Press, 198 pp.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., Z-Z. Hu, M. Latif, L. Bengtsson, and E. Roeckner, 2001: Dynamical and cloud-radiation feedbacks in El Niño and greenhouse warming. Geophys. Res. Lett., 28 , 15391542.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., 1994: On the observed near cancellation between longwave and shortwave cloud forcing in tropical regions. J. Climate, 7 , 559565.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and S. Manabe, 1998: Model assessment of decadal variability and trends in the tropical Pacific Ocean. J. Climate, 11 , 22732296.

    • Search Google Scholar
    • Export Citation
  • Lucarini, V., and G. L. Russell, 2002: Comparison of mean climate trends in the Northern Hemisphere between National Centers for Environmental Prediction and two atmosphere-ocean model forced runs. J. Geophys. Res., 107 .4269, doi:10.1029/2001JD001247.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., R. J. Stouffer, M. J. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4 , 785818.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and W. M. Washington, 1996: El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature, 382 , 5660.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. D. Collins, B. A. Boville, J. T. Kiehl, T. M. L. Wigley, and J. M. Arblaster, 2000: Response of the NCAR climate system model to increased CO2 and the role of physical processes. J. Climate, 13 , 18791898.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, T. M. L. Wigley, J. M. Arblaster, and A. Dai, 2003: Solar and greenhouse gas forcing and climate response in the twentieth century. J. Climate, 16 , 426444.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, W. D. Collins, J. M. Arblaster, A. Hu, L. E. Buja, W. G. Strand, and H. Teng, 2005: How much more global warming and sea level rise? Science, 307 , 17691772.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., W. J. Ingram, and J. A. Lowe, 2000: The effect of stabilizing atmospheric carbon dioxide concentration on global and regional climate change. Geophys. Res. Lett., 27 , 29772980.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 1987: Simple models of steady and low-frequency circulations in the tropical atmosphere, with application to tropical air-sea interactions Ph.D. dissertation, Princeton University, 240 pp.

  • Neelin, J. D., and N. Zeng, 2000: A quasi-equilibrium tropical circulation model—Formulation. J. Atmos. Sci., 57 , 17411766.

  • Neelin, J. D., and H. Su, 2005: Moist teleconnection mechanisms for the tropical South American and Atlantic sector. J. Climate, 18 , 39283950.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., C. Chou, and H. Su, 2003: Tropical drought regions in global warming and El Niño teleconnections. Geophys. Res. Lett., 30 .2275, doi:10.1029/2003GL018625.

    • Search Google Scholar
    • Export Citation
  • Noda, A., K. Yamaguchi, S. Yamaki, and S. Yukimoto, 1999: Relationship between natural variability and CO2-induced warming pattern: MRI AOGCM experiment. Preprints, 10th Symp. on Global Change Studies, Dallas, TX, Amer. Meteor. Soc., 359–362.

  • Oberhuber, J. M., 1993: The OPYC ocean general circulation model. DKRZ Rep. 7, Deutsches Klimarechenzentrum, Hamburg, Germany, 130 pp.

  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie, Rep. 218, 90 pp.

  • Roeckner, E., L. Bengtsson, J. Feichter, J. Lelieveld, and H. Rodhe, 1999: Transient climate change simulation with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle. J. Climate, 12 , 30043032.

    • Search Google Scholar
    • Export Citation
  • Su, H., and J. D. Neelin, 2002: Teleconnection mechanisms for tropical Pacific descent anomalies during El Niño. J. Atmos. Sci., 59 , 26942712.

    • Search Google Scholar
    • Export Citation
  • Su, H., J. D. Neelin, and J. E. Meyerson, 2003: Sensitivity of tropical tropospheric temperature to sea surface temperature forcing. J. Climate, 16 , 12831301.

    • Search Google Scholar
    • Export Citation
  • Tett, S. F. B., 1995: Simulation of El Niño–Southern Oscillation-like variability in a global coupled AOGCM adn its response to CO2 increase. J. Climate, 8 , 14731502.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., T. P. Mitchell, E. M. Rasmusson, V. E. Kousky, E. S. Sarachik, and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons. J. Geophys. Res., 103 , 1424114259.

    • Search Google Scholar
    • Export Citation
  • Washington, W. M., and Coauthors, 2000: Parallel climate model (PCM) control and transient simulations. Climate Dyn., 16 , 755774.

  • Watterson, I. G., 2003: Effects of a dynamic ocean on simulated climate sensitivity to greenhouse gases. Climate Dyn., 21 , 197209.

  • Watterson, I. G., and M. R. Dix, 1999: A comparison of present and doubled CO2 climates and feedbacks simulated by three general circulation models. J. Geophys. Res., 104 , 19431956.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., S. P. O’Farrell, and M. R. Dix, 1997: Energy and water transport in climates simulated by a general circulation model that includes dynamic sea ice. J. Geophys. Res., 102 , 19431956.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., C. A. Senior, and J. F. B. Mitchell, 2001: Transient climate change in the Hadley Centre models: The role of physical processes. J. Climate, 14 , 26592674.

    • Search Google Scholar
    • Export Citation
  • Yonetani, T., and H. B. Gordon, 2001: Simulated changes in the frequency of extremes and regional features of seasonal/annual temperature and precipitation when atmospheric CO2 is doubled. J. Climate, 14 , 17651779.

    • Search Google Scholar
    • Export Citation
  • Yu, J-Y., C. Chou, and J. D. Neelin, 1998: Estimating the gross moist stability of the tropical atmosphere. J. Atmos. Sci., 55 , 13541372.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., J. D. Neelin, and C. Chou, 2000: A quasi-equilibrium tropical circulation model-implementation and simulation. J. Atmos. Sci., 57 , 17671796.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 349 106 8
PDF Downloads 179 76 7