Probabilistic Multimodel Regional Temperature Change Projections

Arthur M. Greene The International Research Institute for Climate and Society, The Earth Institute at Columbia University, Palisades, New York

Search for other papers by Arthur M. Greene in
Current site
Google Scholar
PubMed
Close
,
Lisa Goddard The International Research Institute for Climate and Society, The Earth Institute at Columbia University, Palisades, New York

Search for other papers by Lisa Goddard in
Current site
Google Scholar
PubMed
Close
, and
Upmanu Lall The International Research Institute for Climate and Society, The Earth Institute at Columbia University, Palisades, New York

Search for other papers by Upmanu Lall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Regional temperature change projections for the twenty-first century are generated using a multimodel ensemble of atmosphere–ocean general circulation models. The models are assigned coefficients jointly, using a Bayesian linear model fitted to regional observations and simulations of the climate of the twentieth century. Probability models with varying degrees of complexity are explored, and a selection is made based on Bayesian deviance statistics, coefficient properties, and a classical cross-validation measure utilizing temporally averaged data. The model selected is shown to be superior in predictive skill to a naïve model consisting of the unweighted mean of the underlying atmosphere–ocean GCM (AOGCM) simulations, although the skill differential varies regionally. Temperature projections for the A2 and B1 scenarios from the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios are presented.

Corresponding author address: Arthur M. Greene, The International Research Institute for Climate and Society, The Earth Institute at Columbia University, 202 Monell Building, 61 Route 9W, Palisades, NY 10964. Email: amg@iri.columbia.edu

Abstract

Regional temperature change projections for the twenty-first century are generated using a multimodel ensemble of atmosphere–ocean general circulation models. The models are assigned coefficients jointly, using a Bayesian linear model fitted to regional observations and simulations of the climate of the twentieth century. Probability models with varying degrees of complexity are explored, and a selection is made based on Bayesian deviance statistics, coefficient properties, and a classical cross-validation measure utilizing temporally averaged data. The model selected is shown to be superior in predictive skill to a naïve model consisting of the unweighted mean of the underlying atmosphere–ocean GCM (AOGCM) simulations, although the skill differential varies regionally. Temperature projections for the A2 and B1 scenarios from the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios are presented.

Corresponding author address: Arthur M. Greene, The International Research Institute for Climate and Society, The Earth Institute at Columbia University, 202 Monell Building, 61 Route 9W, Palisades, NY 10964. Email: amg@iri.columbia.edu

Save
  • Allen, M. R., and S. F. B. Tett, 1999: Checking for model consistency in optimal fingerprinting. Climate Dyn., 15 , 419434.

  • Allen, M. R., P. A. S. John, F. B. Mitchell, R. Schnur, and T. L. Delworth, 2000: Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature, 407 , 617620.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., Y. He, and D. A. Unger, 2000: A forecast product that maximizes utility for state-of-the-art seasonal climate prediction. Bull. Amer. Meteor. Soc., 81 , 12711279.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and M. Pham, 2002: History of sulfate aerosol radiative forcings. Geophys. Res. Lett., 29 .1308, doi:10.1029/2001GL014048.

  • Collins, W. D., and Coauthors, 2006: The community climate system model: CCSM3. J. Climate, 19 , 21222143.

  • Craig, P. S., M. Goldstein, J. C. Rougier, and A. H. Seheult, 2001: Bayesian forecasting for complex systems using computer simulators. J. Amer. Stat. Assoc., 96 , 717729.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • Diansky, N. A., and E. M. Volodin, 2002: Simulation of present-day climate with a coupled atmosphere–ocean general circulation model. Izv. Atmos. Oceanic Phys., 38 , 732747.

    • Search Google Scholar
    • Export Citation
  • Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin, 2003: Bayesian Data Analysis. 2d ed. Chapman and Hall/CRC, 696 pp.

  • Gilks, W., S. Richardson, and D. Spiegelhalter, 1996: Markov Chain Monte Carlo in Practice. Chapman and Hall/CRC, 512 pp.

  • Giorgi, F., and R. Francisco, 2000: Evaluating uncertainties in the prediction of regional climate change. Geophys. Res. Lett., 27 , 12951298.

    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11 , 12031211.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., A. Barnston, and S. Mason, 2003: Evaluation of the IRI’s “net assessment” seasonal climate forecasts: 1997–2001. Bull. Amer. Meteor. Soc., 84 , 17611781.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., 2000: The simulation of sst, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16 , 147168.

    • Search Google Scholar
    • Export Citation
  • Gordon, H., and Coauthors, 2002: The CSIRO Mk3 climate system model. CSIRO Atmospheric Research Tech. Paper 60, 130 pp.

  • Hasumi, H., and S. Emory, 2004: K-1 coupled model (MIROC) description. Center for Climate System Research Tech. Rep. 1, University of Tokyo, 34 pp. [Available online at http://www.ccsr.u-tokyo.ac.jp/kyosei/hasumi/MIROC/tech-repo.pdf .].

  • Hegerl, G., G. Meehl, C. Covey, M. Latif, B. McAvaney, and R. Stouffer, cited. 2003: 20C3M: CMIP collecting data from 20th century coupled model simulations. [Available online at http://www.clivar.org/publications/exchanges/ex26/supplement/ .].

  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and Coauthors, 2006: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J. Climate, 19 , 39523972.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., and A. H. Murphy, 1997: Economic Value of Weather and Climate Forecasts. Cambridge University Press, 238 pp.

  • Kuha, J., 2004: AIC and BIC: Comparisons of assumptions and performance. Soc. Meth. Res., 33 , 188229.

  • Lauritzen, S., and D. Spiegelhalter, 1988: Local computations with probabilities on graphical structures and their application to expert systems. J. Roy. Stat. Soc. B, 50 , 157224.

    • Search Google Scholar
    • Export Citation
  • Nakićenović, N., and Coauthors, 2000: IPCC special report on emissions scenarios. Intergovernmental Panel on Climate Change Tech. Rep., 570 pp.

  • New, M., M. Hulme, and P. Jones, 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12 , 829856.

    • Search Google Scholar
    • Export Citation
  • New, M., M. Hulme, and P. Jones, 2000: Representing twentieth-century space–time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13 , 22172238.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., Č Branković, and D. Richardson, 2000: A probability and decision-model analysis of PROVOST seasonal multi-model ensemble integrations. Quart. J. Roy. Meteor. Soc., 126 , 20132033.

    • Search Google Scholar
    • Export Citation
  • Russell, G. L., J. R. Miller, and D. Rind, 1995: A coupled atmosphere–ocean model for transient climate change studies. Atmos.–Ocean, 33 , 683730.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19 , 153192.

    • Search Google Scholar
    • Export Citation
  • Spiegelhalter, D., A. Thomas, N. Best, and W. Gilks, 1996: BUGS 0.5: Bayesian inference using Gibbs sampling manual (version ii). Medical Research Council Biostatistics Unit, 59 pp. [Available online at http://www.mrc-bsu.cam.ak.uk/bugs/documentation/Download/manual0.5.pdf .].

  • Spiegelhalter, D., N. Best, B. Carlin, and A. van der Linde, 2002: Bayesian measures of model complexity and fit (with discussion). J. Roy. Stat. Soc. B, 64 , 583639.

    • Search Google Scholar
    • Export Citation
  • Washington, W. M., and Coauthors, 2000: Parallel climate model (PCM) control and transient simulations. Climate Dyn., 16 , 755774.

  • Yukimoto, S., and Coauthors, 2001: The new Meteorological Research Institute coupled GCM (MRI-CGCM2): Model climate and variability. Pap. Meteor. Geophys., 51 , 4788.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 511 178 16
PDF Downloads 229 72 4