Changes in Spread and Predictability Associated with ENSO in an Ensemble Coupled GCM

Renguang Wu Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Renguang Wu in
Current site
Google Scholar
PubMed
Close
and
Ben P. Kirtman School for Computational Sciences, George Mason University, Fairfax, Virginia, and Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Ben P. Kirtman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The present study documents the influence of El Niño and La Niña events on the spread and predictability of rainfall, surface pressure, and 500-hPa geopotential height, and contrasts the relative contribution of signal and noise changes to the predictability change based on a long-term integration of an interactive ensemble coupled general circulation model. It is found that the pattern of the El Niño–Southern Oscillation (ENSO)-induced noise change for rainfall follows closely that of the corresponding signal change in most of the tropical regions. The noise for tropical Pacific surface pressure is larger (smaller) in regions of lower (higher) mean pressure. The ENSO-induced noise change for 500-hPa height displays smaller spatial scales compared to and has no systematic relationship with the signal change.

The predictability for tropical rainfall and surface pressure displays obvious contrasts between the summer and winter over the Bay of Bengal, the western North Pacific, and the tropical southwestern Indian Ocean. The predictability for tropical 500-hPa height is higher in boreal summer than in boreal winter. In the equatorial central Pacific, the predictability for rainfall is much higher in La Niña years than in El Niño years. This occurs because of a larger percent reduction in the amplitude of noise compared to the percent decrease in the magnitude of signal from El Niño to La Niña years. A consistent change is seen in the predictability for surface pressure near the date line. In the western North and South Pacific, the predictability for boreal winter rainfall is higher in El Niño years than in La Niña years. This is mainly due to a stronger signal in El Niño years compared to La Niña years. The predictability for 500-hPa height increases over most of the Tropics in El Niño years. Over western tropical Pacific–Australia and East Asia, the predictability for boreal winter surface pressure and 500-hPa height is higher in El Niño years than in La Niña years. The predictability change for 500-hPa height is primarily due to the signal change.

Corresponding author address: Dr. Renguang Wu, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705. Email: renguang@cola.iges.org

Abstract

The present study documents the influence of El Niño and La Niña events on the spread and predictability of rainfall, surface pressure, and 500-hPa geopotential height, and contrasts the relative contribution of signal and noise changes to the predictability change based on a long-term integration of an interactive ensemble coupled general circulation model. It is found that the pattern of the El Niño–Southern Oscillation (ENSO)-induced noise change for rainfall follows closely that of the corresponding signal change in most of the tropical regions. The noise for tropical Pacific surface pressure is larger (smaller) in regions of lower (higher) mean pressure. The ENSO-induced noise change for 500-hPa height displays smaller spatial scales compared to and has no systematic relationship with the signal change.

The predictability for tropical rainfall and surface pressure displays obvious contrasts between the summer and winter over the Bay of Bengal, the western North Pacific, and the tropical southwestern Indian Ocean. The predictability for tropical 500-hPa height is higher in boreal summer than in boreal winter. In the equatorial central Pacific, the predictability for rainfall is much higher in La Niña years than in El Niño years. This occurs because of a larger percent reduction in the amplitude of noise compared to the percent decrease in the magnitude of signal from El Niño to La Niña years. A consistent change is seen in the predictability for surface pressure near the date line. In the western North and South Pacific, the predictability for boreal winter rainfall is higher in El Niño years than in La Niña years. This is mainly due to a stronger signal in El Niño years compared to La Niña years. The predictability for 500-hPa height increases over most of the Tropics in El Niño years. Over western tropical Pacific–Australia and East Asia, the predictability for boreal winter surface pressure and 500-hPa height is higher in El Niño years than in La Niña years. The predictability change for 500-hPa height is primarily due to the signal change.

Corresponding author address: Dr. Renguang Wu, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Road, Suite 302, Calverton, MD 20705. Email: renguang@cola.iges.org

Save
  • Barnett, T. P., K. Arpe, L. Bengtsson, M. Ji, and A. Kumar, 1997: Potential predictability and AMIP implications of midlatitude climate variability in two general circulation models. J. Climate, 10 , 23212329.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55 , 477493.

    • Search Google Scholar
    • Export Citation
  • Brankovic, C., and T. N. Palmer, 1997: Atmospheric seasonal predictability and estimates of ensemble size. Mon. Wea. Rev., 125 , 859874.

    • Search Google Scholar
    • Export Citation
  • Brankovic, C., and T. N. Palmer, 2000: Seasonal skill and predictability of ECMWF PROVOST ensembles. Quart. J. Roy. Meteor. Soc., 126B , 20352068.

    • Search Google Scholar
    • Export Citation
  • Chang, Y., S. D. Schubert, and M. J. Suarez, 2000: Boreal winter predictions with the GEOS-2 GCM: The role of boundary forcing and initial conditions. Quart. J. Roy. Meteor. Soc., 126B , 22932321.

    • Search Google Scholar
    • Export Citation
  • Chen, W. Y., 2004: Significant change of extratropical natural variability associated with tropical ENSO anomaly. J. Climate, 17 , 20192030.

    • Search Google Scholar
    • Export Citation
  • Chen, W. Y., and H. M. Van den Dool, 1997: Atmospheric predictability of seasonal, annual, and decadal climate means and the role of the ENSO cycle: A model study. J. Climate, 10 , 12361254.

    • Search Google Scholar
    • Export Citation
  • Davies, J. R., D. P. Rowell, and C. K. Folland, 1997: North Atlantic and European seasonal predictability using an ensemble of multidecadal atmospheric GCM simulations. Int. J. Climatol., 17 , 12631284.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29 , 284305.

    • Search Google Scholar
    • Export Citation
  • Harzallah, A., and R. Sadourny, 1995: Internal versus SST-forced variability as simulated by an atmospheric general circulation model. J. Climate, 8 , 474495.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models. Part I: Theory. Tellus, 28 , 473485.

  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10 , 17691786.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and T-Y. Xu, 2001: Robustness of the nonlinear climate response to ENSO’s extreme cases. J. Climate, 14 , 12771293.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., and F. W. Zwiers, 2003: Improved seasonal probabilistic forecasts. J. Climate, 16 , 16841701.

  • Kinter III, J. L., and Coauthors, 1997: The COLA atmosphere–biosphere general circulation model. Vol. 1, Formulation, COLA Tech. Rep. 51, 46 pp.

  • Kirtman, B. P., and J. Shukla, 2002: Interactive coupled ensemble: A new coupling strategy for CGCMs. Geophys. Res. Lett., 29 .1367, doi:10.1029/2002GL014834.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., J. Shukla, B. Huang, Z. Zhu, and E. K. Schneider, 1997: Multiseasonal prediction with a coupled tropical ocean global atmosphere system. Mon. Wea. Rev., 125 , 789808.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., Y. Fan, and E. K. Schneider, 2002: The COLA global coupled and anomaly coupled ocean–atmosphere GCM. J. Climate, 15 , 23012320.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., K. Pegion, and S. M. Kinter, 2005: Internal atmospheric dynamics and tropical Indo-Pacific climate variability. J. Atmos. Sci., 62 , 22202233.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, C., K. Takano, S. Kusunoki, M. Sugi, and A. Kito, 2000: Seasonal predictability in winter over eastern Asia using the JMA global model. Quart. J. Roy. Meteor. Soc., 126B , 21112124.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 1995: Prospects and limitations of seasonal atmospheric GCM predictions. Bull. Amer. Meteor. Soc., 76 , 335345.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 1998a: Annual cycle of Pacific–North American seasonal predictability associated with different phases of ENSO. J. Climate, 11 , 32953308.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 1998b: Specification of regional sea surface temperatures in atmospheric general circulation model simulations. J. Geophys. Res., 103 , 89018907.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., A. G. Barnston, P. Peng, M. P. Hoerling, and L. Goddard, 2000: Changes in the spread of the variability of the seasonal mean atmospheric states associated with ENSO. J. Climate, 13 , 31393151.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., S. Schubert, and M. Suarez, 2003: Variability and predictability of 200-mb seasonal mean heights during summer and winter. J. Geophys. Res., 108 .4169, doi:10.1029/2002JD002728.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1998: MOM 3.0 manual. NOAA/GFDL, 638 pp.

  • Peng, P., and A. Kumar, 2005: A large ensemble analysis of the influence of tropical SSTs on seasonal atmospheric variability. J. Climate, 18 , 10681085.

    • Search Google Scholar
    • Export Citation
  • Quan, X-W., P. J. Webster, A. M. Moore, and H. R. Change, 2004: Seasonality in SST-forced atmospheric short-term climate predictability. J. Climate, 17 , 30903108.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 1998: Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J. Climate, 11 , 109120.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., and F. W. Zwiers, 1999: The global distribution of sources of atmospheric decadal variability and mechanisms over the tropical Pacific and southern North America. Climate Dyn., 15 , 751772.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., C. K. Folland, K. Maskell, and M. N. Ward, 1995: Variability of summer rainfall over tropical North Africa (1906–92): Observations and modeling. Quart. J. Roy. Meteor. Soc., 121 , 669704.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2000: Changes of probability associated with ENSO. J. Climate, 13 , 42684286.

  • Schubert, S. D., M. J. Suarez, Y. Chang, and G. Branstator, 2001: The impact of ENSO on extratropical low-frequency noise in seasonal forecasts. J. Climate, 14 , 23512365.

    • Search Google Scholar
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, M. A. Kistler, and A. Kumar, 2002: Predictability of zonal means during boreal summer. J. Climate, 15 , 420434.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1998: Predictability in the midst of chaos: A scientific basis for climate forecasting. Science, 282 , 728731.

  • Shukla, J., and Coauthors, 2000a: Dynamical seasonal prediction. Bull. Amer. Meteor. Soc., 81 , 25932606.

  • Shukla, J., D. A. Paolino, D. M. Straus, D. DeWitt, M. Fennessy, J. L. Kinter, L. Marx, and R. Mo, 2000b: Dynamical seasonal prediction with the COLA atmospheric model. Quart. J. Roy. Meteor. Soc., 126 , 22652291.

    • Search Google Scholar
    • Export Citation
  • Straus, D. M., and J. Shukla, 2000: Distinguishing between the SST-forced variability and internal variability in mid-latitudes: Analysis of observations and GCM simulations. Quart. J. Roy. Meteor. Soc., 126 , 23232350.

    • Search Google Scholar
    • Export Citation
  • Straus, D. M., and J. Shukla, 2002: Does ENSO force the PNA? J. Climate, 15 , 23402358.

  • Straus, D. M., J. Shukla, D. A. Paolino, S. D. Schubert, M. J. Suarez, P. J. Pegion, and A. Kumar, 2003: Predictability of the seasonal atmospheric circulation during autumn, winter, and spring. J. Climate, 16 , 36293649.

    • Search Google Scholar
    • Export Citation
  • Wang, B., I-S. Kang, and J-Y. Li, 2004: Ensemble simulation of Asian–Australian monsoon variability by 11 AGCMs. J. Climate, 17 , 803818.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J., and A. F. Loughe, 1998: The relationship between ensemble spread and ensemble mean skill. Mon. Wea. Rev., 126 , 32923302.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2003: On the impacts of the Indian summer monsoon on ENSO in a coupled GCM. Quart. J. Roy. Meteor. Soc., 129B , 34393468.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2004: Impact of the Indian Ocean on the Indian summer monsoon–ENSO relationship. J. Climate, 17 , 30373054.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2005: Roles of Indian and Pacific Ocean air–sea coupling in tropical atmospheric variability. Climate Dyn., 25 , 155170.

    • Search Google Scholar
    • Export Citation
  • Yeh, S-W., and B. P. Kirtman, 2004: The impact of internal atmospheric variability on North Pacific decadal variability. Climate Dyn., 22 , 721732.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., 1996: Interannual variability and predictability in an ensemble of AMIP climate simulations conducted with the CCC GCM2. Climate Dyn., 12 , 825848.

    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., X-L. Wang, and J. Sheng, 2000: Effects of specifying bottom boundary conditions in an ensemble of atmospheric GCM simulations. J. Geophys. Res., 105 , 72957315.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 286 84 2
PDF Downloads 168 54 3