The Temporal Variability of Soil Moisture and Surface Hydrological Quantities in a Climate Model

Vivek K. Arora Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Vivek K. Arora in
Current site
Google Scholar
PubMed
Close
and
George J. Boer Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by George J. Boer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The variance budget of land surface hydrological quantities is analyzed in the second Atmospheric Model Intercomparison Project (AMIP2) simulation made with the Canadian Centre for Climate Modelling and Analysis (CCCma) third-generation general circulation model (AGCM3). The land surface parameterization in this model is the comparatively sophisticated Canadian Land Surface Scheme (CLASS). Second-order statistics, namely variances and covariances, are evaluated, and simulated variances are compared with observationally based estimates. The soil moisture variance is related to second-order statistics of surface hydrological quantities. The persistence time scale of soil moisture anomalies is also evaluated.

Model values of precipitation and evapotranspiration variability compare reasonably well with observationally based and reanalysis estimates. Soil moisture variability is compared with that simulated by the Variable Infiltration Capacity-2 Layer (VIC-2L) hydrological model driven with observed meteorological data. An equation is developed linking the variances and covariances of precipitation, evapotranspiration, and runoff to soil moisture variance via a transfer function. The transfer function is connected to soil moisture persistence in terms of lagged autocorrelation. Soil moisture persistence time scales are shorter in the Tropics and longer at high latitudes as is consistent with the relationship between soil moisture persistence and the latitudinal structure of potential evaporation found in earlier studies. In the Tropics, although the persistence of soil moisture anomalies is short and values of the transfer function small, high values of soil moisture variance are obtained because of high precipitation variability. At high latitudes, by contrast, high soil moisture variability is obtained despite modest precipitation variability since the persistence time scale of soil moisture anomalies is long. Model evapotranspiration estimates show little variability and soil moisture variability is dominated by precipitation and runoff, which account for about 90% of the soil moisture variance over land surface areas.

Corresponding author address: Vivek Arora, Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada, University of Victoria, Victoria, BC V8W 2Y2, Canada. Email: vivek.arora@ec.gc.ca

Abstract

The variance budget of land surface hydrological quantities is analyzed in the second Atmospheric Model Intercomparison Project (AMIP2) simulation made with the Canadian Centre for Climate Modelling and Analysis (CCCma) third-generation general circulation model (AGCM3). The land surface parameterization in this model is the comparatively sophisticated Canadian Land Surface Scheme (CLASS). Second-order statistics, namely variances and covariances, are evaluated, and simulated variances are compared with observationally based estimates. The soil moisture variance is related to second-order statistics of surface hydrological quantities. The persistence time scale of soil moisture anomalies is also evaluated.

Model values of precipitation and evapotranspiration variability compare reasonably well with observationally based and reanalysis estimates. Soil moisture variability is compared with that simulated by the Variable Infiltration Capacity-2 Layer (VIC-2L) hydrological model driven with observed meteorological data. An equation is developed linking the variances and covariances of precipitation, evapotranspiration, and runoff to soil moisture variance via a transfer function. The transfer function is connected to soil moisture persistence in terms of lagged autocorrelation. Soil moisture persistence time scales are shorter in the Tropics and longer at high latitudes as is consistent with the relationship between soil moisture persistence and the latitudinal structure of potential evaporation found in earlier studies. In the Tropics, although the persistence of soil moisture anomalies is short and values of the transfer function small, high values of soil moisture variance are obtained because of high precipitation variability. At high latitudes, by contrast, high soil moisture variability is obtained despite modest precipitation variability since the persistence time scale of soil moisture anomalies is long. Model evapotranspiration estimates show little variability and soil moisture variability is dominated by precipitation and runoff, which account for about 90% of the soil moisture variance over land surface areas.

Corresponding author address: Vivek Arora, Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada, University of Victoria, Victoria, BC V8W 2Y2, Canada. Email: vivek.arora@ec.gc.ca

Save
  • Abdella, K., and N. A. McFarlane, 1996: Parameterization of the surface-layer exchange coefficients for atmospheric models. Bound.-Layer Meteor., 80 , 223248.

    • Search Google Scholar
    • Export Citation
  • Albertson, J. D., and N. Montaldo, 2003: Temporal dynamics of soil moisture variability: 1. Theoretical basis. Water Resour. Res., 39 .1724, doi:10.1029/2002WR001616.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., 2002: Modelling vegetation as a dynamic component in soil–vegetation–atmosphere-transfer schemes and hydrological models. Rev. Geophys., 40 .1006, doi:10.1029/2001RG000103.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and G. J. Boer, 2002: An assessment of simulated global moisture budget, and the role of moisture reservoirs in processing precipitation. Climate Dyn., 20 , 1329.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and G. J. Boer, 2003: An analysis of simulated runoff and surface moisture fluxes in the CCCma coupled atmosphere land surface hydrological model. Proc. Int. Congress on Modelling and Simulation, MODSIM 2003, Vol. 1, Townsville, Queensland, Australia, Modelling and Simulation Society of Australia and New Zealand, 166–171.

  • Avissar, R., and Y. Liu, 1996: A three-dimensional numerical study of shallow convective clouds and precipitation induced by land-surface forcing. J. Geophys. Res., 101 , 74997518.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 1995: A hybrid moisture variable suitable for spectral GCMs. Research Activities in Atmospheric and Oceanic Modelling, WGNE Rep. 21, WMO/TD-665, World Meteorological Organization, Geneva, Switzerland.

  • Boer, G. J., N. A. McFarlane, R. Laprise, J. D. Henderson, and J-P. Blanchet, 1984: The Canadian Climate Centre spectral atmospheric general circulation model. Atmos.–Ocean, 22 , 397429.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., W. J. Quirks, S. H. Chow, and J. Kornfield, 1977: A comparative study of the effects of albedo change on drought in semi-arid regions. J. Atmos. Sci., 34 , 13661385.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and S. Manabe, 1988: The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate, 1 , 523547.

    • Search Google Scholar
    • Export Citation
  • Delworth, D., and S. Manabe, 1989: The influence of soil wetness on near-surface atmospheric variability. J. Climate, 2 , 14471462.

  • Dickinson, R. E., and A. Henderson-Sellers, 1988: Modeling tropical deforestation: A study of GCM land-surface parameterizations. Quart. J. Roy. Meteor. Soc., 114 , 439462.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., A. Henderson-Sellers, P. J. Kennedy, and M. F. Wilson, 1986: Biosphere–Atmosphere Transfer Scheme (BATS) for the NCAR community climate model. Tech. Note TN-275+STR, NCAR, Boulder, CO, 69 pp.

  • Dickinson, R. E., M. Shaikh, R. Bryant, and L. Graumlich, 1998: Interactive canopies for a climate model (BATS). J. Climate, 11 , 28232836.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 2000: Using a global soil wetness dataset to improve seasonal climate simulation. J. Climate, 13 , 29002922.

  • Dirmeyer, P. A., A. J. Dolman, and N. Sato, 1999: The pilot phase of the global soil wetness project. Bull. Amer. Meteor. Soc., 80 , 851878.

    • Search Google Scholar
    • Export Citation
  • Douville, H., and F. Chauvin, 2000: Relevance of soil moisture for seasonal climate predictions: A preliminary study. Climate Dyn., 16 , 719736.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and I. Rodriguez-Iturbe, 1994: Analytical framework for the characterization of the space–time variability of soil moisture. Adv. Water Resour., 17 , 3545.

    • Search Google Scholar
    • Export Citation
  • Entin, J. K., A. Robock, K. Y. Vinnikov, V. Zabelin, S. Liu, A. Namkhai, and Ts Adyasuren, 1999: Evaluation of global soil wetness project soil moisture simulations. J. Meteor. Soc. Japan, 77 , 183198.

    • Search Google Scholar
    • Export Citation
  • Fennessey, M. J., and J. Shukla, 1999: Impact of initial soil wetness on seasonal atmospheric prediction. J. Climate, 12 , 31673180.

  • Fiorino, M., 1996: AMIP II sea surface temperature and sea ice concentration observations. [Available online at http://www-pcmdi.llnl.gov/projects/amip/AMIP2EXPDSN/BCS_OBS/amip2_bcs.htm.].

  • Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine, 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics (IBIS). Global Biogeochem. Cycles, 10 , 603628.

    • Search Google Scholar
    • Export Citation
  • Gao, X. G., S. Sorooshian, and H. V. Gupta, 1996: A sensitivity analysis of the Biosphere–Atmosphere Transfer Scheme (BATS). J. Geophys. Res., 101 , 72797290.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80 , 2956.

    • Search Google Scholar
    • Export Citation
  • Gedney, N., P. M. Cox, H. Douville, J. Polcher, and P. J. Valdes, 2000: Characterizing GCM land surface schemes to understand their responses to climate change. J. Climate, 13 , 30663079.

    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., P. Kallberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA description. ECMWF Re-Analysis Project Rep. Series 1, Reading, United Kingdom, 77 pp.

  • Holzer, M., 1996: Optimal spectral topography and its effect on model climate. J. Climate, 9 , 24432463.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Koster, R. D., and M. J. Suarez, 1995: The relative contributions of land and ocean processes to precipitation variability. J. Geophys. Res., 100 , 1377513790.

    • Search Google Scholar
    • Export Citation
  • Koster, R. A., and M. J. Suarez, 2001: Soil moisture memory in climate models. J. Hydrometeor., 2 , 558570.

  • Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges, 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99 , 1441514428.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and R. Avissar, 1999: A study of persistence in the land–atmosphere system using a general circulation model and observations. J. Climate, 12 , 21392153.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and the ocean circulation. I. The atmospheric circulation and the hydrology of the earth’s surface. Mon. Wea. Rev., 97 , 739744.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and T. Delworth, 1990: The temporal variability of soil wetness and its impact on climate. Climate Change, 16 , 185192.

  • McFarlane, N. A., G. J. Boer, J. P. Blanchet, and M. Lazare, 1992: The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J. Climate, 5 , 10131044.

    • Search Google Scholar
    • Export Citation
  • McMahon, T., 1979: Hydrological characteristics of arid zones: The hydrology of areas of low precipitation. Rep. 128, IAHS, Canberra, Australia, 105–123.

  • Mintz, Y., and Y. V. Serafini, 1992: A global monthly climatology of soil moisture and water balance. Climate Dyn., 8 , 1327.

  • Namias, J., 1952: The annual course of month-to-month persistence in climate anomalies. Bull. Amer. Meteor. Soc., 33 , 279285.

  • Namias, J., 1959: Persistence in mid-tropospheric circulations between adjacent months and seasons. The Atmosphere and the Sea in Motion: Rossby Memorial Volume, Bert Bolin, Ed., Rockefeller Institute Press and Oxford University Press, 240–248.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., R. Schnur, and D. P. Lettenmaier, 2001: Global retrospective estimation of soil moisture using the VIC land surface model, 1980–93. J. Climate, 14 , 17901808.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and S. Planton, 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117 , 536549.

    • Search Google Scholar
    • Export Citation
  • Roads, J., and A. Betts, 2000: NCEP–NCAR and ECMWF reanalysis surface water and energy budgets for the Mississippi River basin. J. Hydrometeor., 1 , 8894.

    • Search Google Scholar
    • Export Citation
  • Robock, A., C. A. Schlosser, K. Ya Vinnikov, N. A. Speranskaya, J. K. Entin, and S. Qiu, 1998: Evaluation of the AMIP soil moisture simulations. Global Planet. Change, 19 , 1–4. 181209.

    • Search Google Scholar
    • Export Citation
  • Robock, A., K. Ya Vinnikov, G. Srinivasan, J. K. Entin, S. E. Hollinger, N. A. Speranskaya, S. Liu, and A. Namkhai, 2000: The global soil moisture data bank. Bull. Amer. Meteor. Soc., 81 , 12811300.

    • Search Google Scholar
    • Export Citation
  • Rowntree, P. R., and J. A. Bolton, 1983: Simulation of the atmospheric response to soil moisture anomalies over Europe. Quart. J. Roy. Meteor. Soc., 109 , 501526.

    • Search Google Scholar
    • Export Citation
  • Schemm, J-K., S. Schubert, J. Terry, and S. Bloom, 1992: Estimates of monthly mean soil moisture for 1979–89. NASA Tech. Memo. 104571, 252 pp.

  • Scinocca, J. F., and N. A. McFarlane, 2004: The variability of modeled tropical precipitation. J. Atmos. Sci., 61 , 19932015.

  • Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43 , 505531.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996a: The ISLSCP Initiative I global datasets: Surface boundary conditions and atmospheric forcing for land–atmosphere studies. Bull. Amer. Meteor. Soc., 77 , 19872005.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996b: A revised land surface parameterization (SiB2) for atmospheric GCMS. Part I: Model formulation. J. Climate, 9 , 676705.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Y. Mintz, 1982: Influence of land-surface evapotranspiration on earth’s climate. Science, 215 , 14981501.

  • Shukla, J., C. Nobre, and P. Sellers, 1990: Amazon deforestation and climate change. Science, 215 , 14981501.

  • Teuling, A. J., and P. A. Troch, 2005: Improved understanding of soil moisture variability dynamics. Geophys. Res. Lett., 32 .L05404, doi:10.1029/2004GL021935.

    • Search Google Scholar
    • Export Citation
  • Verseghy, D., 1991: CLASS—A Canadian land surface scheme for GCMs. I. Soil model. Int. J. Climatol., 11 , 111133.

  • Verseghy, D., N. A. McFarlane, and M. Lazare, 1993: CLASS—A Canadian land surface scheme for GCMs. II. Vegetation model and coupled runs. Int. J. Climatol., 13 , 347370.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., and A. C. M. Beljaars, 1995: An improved land surface parameterization scheme in the ECMWF model and its validation. J. Climate, 8 , 27162748.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Walker, J. M., and P. R. Rowntree, 1977: The effect of soil moisture on circulation and rainfall in a tropical model. Quart. J. Roy. Meteor. Soc., 103 , 2946.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., C. M. Rowe, and Y. Mintz, 1985: Climatology of the terrestrial seasonal water cycle. J. Climatol., 5 , 589606.

  • Xie, P., and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9 , 840858.

    • Search Google Scholar
    • Export Citation
  • Yeh, T. C., R. T. Weatherald, and S. Manabe, 1984: The effect of soil moisture on short term climate and hydrology change—A numerical experiment. Mon. Wea. Rev., 112 , 474490.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the CCC GCM. Atmos.–Ocean, 3 , 407446.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 236 65 5
PDF Downloads 140 31 1