Studies of El Niño and Interdecadal Variability in Tropical Sea Surface Temperatures Using a Nonnormal Filter

Cécile Penland NOAA/Earth System Research Laboratory, and CIRES/Climate Diagnostics Center, Boulder, Colorado

Search for other papers by Cécile Penland in
Current site
Google Scholar
PubMed
Close
and
Ludmila Matrosova NOAA/Earth System Research Laboratory, and CIRES/Climate Diagnostics Center, Boulder, Colorado

Search for other papers by Ludmila Matrosova in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A dynamically based filter is used to separate tropical sea surface temperatures (SSTs) into three components: the evolving El Niño signal, the global tropical trend, and the background. The components thus isolated are not independent. On the contrary, this procedure allows us to see the importance of the interdecadal signal to the predictability of El Niño.

The data filtered in this way reveal El Niño signals in the equatorial Indian Ocean and in the north tropical Atlantic Ocean that are remarkably similar. A signature of El Niño in the south tropical Atlantic leads Niño-3.4 SST anomalies by about 9 months. The time series of a global tropical trend is found to have a very smooth parabolic structure. In unfiltered data, this trend conspires with El Niño to obscure a meridional tropical Atlantic dipole, which is significant in the filtered background SST data.

Corresponding author address: Cécile Penland, NOAA/ESRL/PSD3, 325 Broadway, Boulder, CO 80305. Email: cecile.penland@noaa.gov

Abstract

A dynamically based filter is used to separate tropical sea surface temperatures (SSTs) into three components: the evolving El Niño signal, the global tropical trend, and the background. The components thus isolated are not independent. On the contrary, this procedure allows us to see the importance of the interdecadal signal to the predictability of El Niño.

The data filtered in this way reveal El Niño signals in the equatorial Indian Ocean and in the north tropical Atlantic Ocean that are remarkably similar. A signature of El Niño in the south tropical Atlantic leads Niño-3.4 SST anomalies by about 9 months. The time series of a global tropical trend is found to have a very smooth parabolic structure. In unfiltered data, this trend conspires with El Niño to obscure a meridional tropical Atlantic dipole, which is significant in the filtered background SST data.

Corresponding author address: Cécile Penland, NOAA/ESRL/PSD3, 325 Broadway, Boulder, CO 80305. Email: cecile.penland@noaa.gov

Save
  • Barnett, T. P., 1991: The interaction of multiple time scales in the tropical climate system. J. Climate, 4 , 269285.

  • Barsugli, J. J., and P. D. Sardeshmukh, 2002: Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J. Climate, 15 , 34273442.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci., 45 , 28892919.

    • Search Google Scholar
    • Export Citation
  • Borges, M. D., and P. D. Sardeshmukh, 1995: Barotropic Rossby wave dynamics of zonally varying upper-level flows during northern winter. J. Atmos. Sci., 52 , 37793796.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature, 385 , 516518.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, and R. Saravanan, 2001: A hybrid coupled model study of tropical Atlantic variability. J. Climate, 14 , 361390.

  • Chelliah, M., and G. D. Bell, 2004: Tropical multidecadal and interannual climate variability in the NCEP–NCAR reanalysis. J. Climate, 17 , 17771803.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic SST variability and its relation to El Niño–Southern Oscillation. J. Geophys. Res., 102 , 929945.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, D. A. Mayer, and L. Cid-Serrano, 1999: How ubiquitous is the dipole in tropical Atlantic sea surface temperatures? J. Geophys. Res., 104 , 78417848.

    • Search Google Scholar
    • Export Citation
  • Farrell, B., 1988: Optimal excitation of neutral Rossby waves. J. Atmos. Sci., 45 , 163172.

  • Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and world-wide sea temperatures, 1901–85. Nature, 320 , 602607.

    • Search Google Scholar
    • Export Citation
  • García, A. L., M. M. Mansour, G. C. Lie, and E. Clementi, 1987: Numerical integration of the fluctuating hydrodynamic equations. J. Stat. Phys., 47 , 209228.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1988: PIPs and POPs—A general formalism for the reduction of dynamical systems in terms of Principal Interaction Patterns and Principal Oscillation Patterns. J. Geophys. Res., 93 , 1101511020.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 1978: On modes of tropical circulation and climate anomalies. J. Atmos. Sci., 35 , 22222231.

  • Hastenrath, S., 2002: Dipoles, temperature gradients, and tropical temperature anomalies. Bull. Amer. Meteor. Soc., 83 , 735738.

  • Hastenrath, S., and L. Heller, 1977: Dynamics of climatic hazards in northeast Brazil. Quart. J. Roy. Meteor. Soc., 103 , 7792.

  • Hastenrath, S., and L. Greischar, 1993: Circulation anomalies related to northeast Brazil rainfall anomalies. J. Geophys. Res., 98 , 50935102.

    • Search Google Scholar
    • Export Citation
  • Houghton, R. W., and Y. M. Tourre, 1992: Characteristics of low-frequency sea surface temperature fluctuations in the tropical Atlantic. J. Climate, 5 , 765771.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and T. M. Smith, 1999: Covariability of aspects of North American climate with global sea surface temperatures on interannual to interdecadal timescales. J. Climate, 12 , 289302.

    • Search Google Scholar
    • Export Citation
  • Lough, J. M., 1986: Tropical Atlantic sea surface temperature and rainfall variations in subsaharan weather anomalies. Mon. Wea. Rev., 114 , 561570.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and S. Häkkinen, 2001: Interannual variability in the tropical Atlantic and linkages to the Pacific. J. Climate, 14 , 27402762.

    • Search Google Scholar
    • Export Citation
  • Moura, A. D., and J. Shukla, 1981: On the dynamics of droughts in northeast Brazil: Observations, theory, and numerical experiments with a general circulation model. J. Atmos. Sci., 38 , 26532675.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and T. Magorian, 1993: Prediction of Niño 3 sea surface temperatures using linear inverse modeling. J. Climate, 6 , 10671076.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosova, 1994: A balance condition for stochastic numerical models with application to the El Niño–Southern Oscillation. J. Climate, 7 , 13521372.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995a: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8 , 19992024.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995b: Error and sensitivity analysis of geophysical eigensystems. J. Climate, 8 , 19881998.

  • Penland, C., and L. Matrosova, 1998: Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J. Climate, 11 , 483496.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19 , 34833517.

  • Servain, J., 1991: Simple climate indices for the tropical Atlantic Ocean and some applications. J. Geophys. Res., 96 , 1513715146.

  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45 , 32833287.

  • Vautard, R., and M. Ghil, 1989: Singular spectrum analysis in nonlinear dynamics, with application to paleoclimatic time series. Physica D, 35 , 395494.

    • Search Google Scholar
    • Export Citation
  • Venegas, S. A., L. A. Mysak, and D. N. Straub, 1997: Atmosphere–ocean coupled variability in the South Atlantic. J. Climate, 10 , 29042920.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16 , 26682675.

    • Search Google Scholar
    • Export Citation
  • Von Storch, H., T. Bruns, I. Fischer-Bruns, and K. Hasselmann, 1988: Principal oscillation pattern analysis of the 30- to 60-day oscillation in a GCM equatorial troposphere. J. Geophys. Res., 93 , 1102211036.

    • Search Google Scholar
    • Export Citation
  • Weare, B., 1977: Empirical orthogonal analysis of Atlantic Ocean surface temperature. Quart. J. Roy. Meteor. Soc., 103 , 467478.

  • Woodruff, S., S. Lubker, K. Wolter, S. Worley, and J. Elms, 1993: Comprehensive Ocean–Atmosphere Data Set (COADS) Release 1a: 1980–92. Earth Syst. Monitor, 4 , 38.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 395 198 16
PDF Downloads 260 87 11