Influence of the Multidecadal Atlantic Meridional Overturning Circulation Variability on European Climate

Holger Pohlmann Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada, and Max-Planck-Institut für Meteorologie, Hamburg, Germany

Search for other papers by Holger Pohlmann in
Current site
Google Scholar
PubMed
Close
,
Frank Sienz Meteorologisches Institut, Universität Hamburg, and Max-Planck-Institut für Meteorologie, Hamburg, Germany

Search for other papers by Frank Sienz in
Current site
Google Scholar
PubMed
Close
, and
Mojib Latif Leibniz-Institut für Meereswissenschaften, Kiel, and Max-Planck-Institut für Meteorologie, Hamburg, Germany

Search for other papers by Mojib Latif in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The influence of the natural multidecadal variability of the Atlantic meridional overturning circulation (MOC) on European climate is investigated using a simulation with the coupled atmosphere–ocean general circulation model ECHAM5/Max Planck Institute Ocean Model (MPI-OM). The results show that Atlantic MOC fluctuations, which go along with changes in the northward heat transport, in turn affect European climate. Additionally, ensemble predictability experiments with ECHAM5/MPI-OM show that the probability density functions of surface air temperatures in the North Atlantic/European region are affected by the multidecadal variability of the large-scale oceanic circulation. Thus, some useful decadal predictability may exist in the Atlantic/European sector.

Corresponding author address: Holger Pohlmann, Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax NS B3H 4J1, Canada. Email: Holger.Pohlmann@dal.ca

Abstract

The influence of the natural multidecadal variability of the Atlantic meridional overturning circulation (MOC) on European climate is investigated using a simulation with the coupled atmosphere–ocean general circulation model ECHAM5/Max Planck Institute Ocean Model (MPI-OM). The results show that Atlantic MOC fluctuations, which go along with changes in the northward heat transport, in turn affect European climate. Additionally, ensemble predictability experiments with ECHAM5/MPI-OM show that the probability density functions of surface air temperatures in the North Atlantic/European region are affected by the multidecadal variability of the large-scale oceanic circulation. Thus, some useful decadal predictability may exist in the Atlantic/European sector.

Corresponding author address: Holger Pohlmann, Department of Oceanography, Dalhousie University, 1355 Oxford Street, Halifax NS B3H 4J1, Canada. Email: Holger.Pohlmann@dal.ca

Save
  • Alley, R. B., and Coauthors, 2003: Abrupt climate change. Science, 299 , 20052010.

  • Broecker, W., 1987: Unpleasant surprises in the greenhouse? Nature, 328 , 123126.

  • Broecker, W., 1991: The great ocean conveyor. Oceanography, 4 , 7989.

  • Collins, M., and B. Sinha, 2003: Predictability of decadal variations in the thermohaline circulation and climate. Geophys. Res. Lett., 30 .1306, doi:10.1029/2002GL016504.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 , 453457.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and K. Bryan, 1997: Predictability of North Atlantic multidecadal climate variability. Science, 275 , 181184.

  • Grötzner, A., M. Latif, A. Timmermann, and R. Voss, 1999: Interannual to decadal predictability in a coupled ocean–atmosphere general circulation model. J. Climate, 12 , 26072624.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., H. Haak, M. Latif, and U. Mikolajewicz, 2005: Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J. Climate, 18 , 40134031.

    • Search Google Scholar
    • Export Citation
  • Latif, M., E. Roeckner, U. Mikolajewicz, and R. Voss, 2000: Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J. Climate, 13 , 18091813.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 2004: Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Climate, 17 , 16051614.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1993: Century-scale effects of increased atmospheric CO2 on the ocean–atmosphere system. Nature, 364 , 215218.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1994: Multiple-century response of a coupled ocean–atmosphere model to an increase of atmospheric carbon dioxide. J. Climate, 7 , 523.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1999a: The role of thermohaline circulation in climate. Tellus, 51A , 91109.

  • Manabe, S., and R. J. Stouffer, 1999b: Are two modes of thermohaline circulation stable? Tellus, 51A , 400411.

  • Marsland, S. J., H. Haak, J. H. Jungclaus, M. Latif, and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5 , 91127.

    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., M. Botzet, M. Latif, A. Roesch, M. Wild, and P. Tschuck, 2004: Estimating the decadal predictability of a coupled AOGCM. J. Climate, 17 , 44634472.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1999: Shifting seas in the greenhouse? Nature, 399 , 523524.

  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. MPI Rep. 349, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 127 pp.

  • Schiller, A., U. Mikolajewicz, and R. Voss, 1997: The stability of the North Atlantic thermohaline circulation in a coupled ocean–atmosphere general circulation model. Climate Dyn., 13 , 325347.

    • Search Google Scholar
    • Export Citation
  • Shaffrey, L., and R. Sutton, 2006: Bjerknes compensation and the decadal variability of the energy transports in a coupled climate model. J. Climate, 19 , 11671181.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14 , 34333443.

  • Vellinga, M., and R. A. Wood, 2002: Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change, 54 , 251267.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and C. Hillaire-Marcel, 2004: Global warming and the next ice age. Science, 304 , 400402.

  • Wood, R. A., A. B. Keen, J. F. B. Mitchell, and J. M. Gregory, 1999: Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature, 399 , 572575.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1369 885 405
PDF Downloads 217 42 4