The Physical Basis for Predicting Atlantic Sector Seasonal-to-Interannual Climate Variability

Yochanan Kushnir Lamont-Doherty Earth Observatory, Palisades, New York

Search for other papers by Yochanan Kushnir in
Current site
Google Scholar
PubMed
Close
,
Walter A. Robinson University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Walter A. Robinson in
Current site
Google Scholar
PubMed
Close
,
Ping Chang Texas A&M University, College Station, Texas

Search for other papers by Ping Chang in
Current site
Google Scholar
PubMed
Close
, and
Andrew W. Robertson International Research Institute for Climate Prediction, Palisades, New York

Search for other papers by Andrew W. Robertson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper reviews the observational and theoretical basis for the prediction of seasonal-to-interannual (S/I) climate variability in the Atlantic sector. The emphasis is on the large-scale picture rather than on regional details. The paper is divided into two main parts: a discussion of the predictability of the North Atlantic Oscillation (NAO)—the dominant pattern of variability in the North Atlantic—and a review of the tropical Atlantic prediction problem. The remote effects of El Niño are also mentioned as an important factor in Atlantic climate variability. Only a brief discussion is provided on the subject of South Atlantic climate predictability.

Because of its chaotic dynamical nature, the NAO and its related rainfall and temperature variability, while highly significant over Europe and North America, are largely unpredictable. This also affects the predictive skill over the tropical Atlantic, because the NAO interferes with the remote influence of El Niño. That said, there appears to be an insufficiently understood, marginal signal in the NAO behavior that may be predictable and thus useful to certain end users. It is manifested in the deviation of the NAO temporal behavior from first-order autoregressive behavior.

Tropical Atlantic climate variability centers on the sensitivity of the marine ITCZ to remote forcing from the equatorial Pacific and interactions with underlying sea surface temperature (SST) variability. Both mechanisms are potentially predictable—that is, given the underlying SSTs and the strength of El Niño, one could determine with a high degree of skill the anomalies in ITCZ position and intensity. However, local SSTs are easily affected by largely unpredictable North and South Atlantic phenomena, such as the NAO. In addition, the local ocean–atmosphere coupling in the Atlantic acts on relatively short time scales. Thus, in reality the level of skill indicated by forced model simulations are difficult to achieve. The use of coupled models may improve the prospects of tropical Atlantic prediction.

* Lamont-Doherty Earth Observatory Contribution Number 6936

Corresponding author address: Yochanan Kushnir, Lamont-Doherty Earth Observatory, 61 Route 9W, Palisades, NY 10964. Email: Kushnir@ldeo.columbia.edu

Abstract

This paper reviews the observational and theoretical basis for the prediction of seasonal-to-interannual (S/I) climate variability in the Atlantic sector. The emphasis is on the large-scale picture rather than on regional details. The paper is divided into two main parts: a discussion of the predictability of the North Atlantic Oscillation (NAO)—the dominant pattern of variability in the North Atlantic—and a review of the tropical Atlantic prediction problem. The remote effects of El Niño are also mentioned as an important factor in Atlantic climate variability. Only a brief discussion is provided on the subject of South Atlantic climate predictability.

Because of its chaotic dynamical nature, the NAO and its related rainfall and temperature variability, while highly significant over Europe and North America, are largely unpredictable. This also affects the predictive skill over the tropical Atlantic, because the NAO interferes with the remote influence of El Niño. That said, there appears to be an insufficiently understood, marginal signal in the NAO behavior that may be predictable and thus useful to certain end users. It is manifested in the deviation of the NAO temporal behavior from first-order autoregressive behavior.

Tropical Atlantic climate variability centers on the sensitivity of the marine ITCZ to remote forcing from the equatorial Pacific and interactions with underlying sea surface temperature (SST) variability. Both mechanisms are potentially predictable—that is, given the underlying SSTs and the strength of El Niño, one could determine with a high degree of skill the anomalies in ITCZ position and intensity. However, local SSTs are easily affected by largely unpredictable North and South Atlantic phenomena, such as the NAO. In addition, the local ocean–atmosphere coupling in the Atlantic acts on relatively short time scales. Thus, in reality the level of skill indicated by forced model simulations are difficult to achieve. The use of coupled models may improve the prospects of tropical Atlantic prediction.

* Lamont-Doherty Earth Observatory Contribution Number 6936

Corresponding author address: Yochanan Kushnir, Lamont-Doherty Earth Observatory, 61 Route 9W, Palisades, NY 10964. Email: Kushnir@ldeo.columbia.edu

Save
  • Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25 , 122137.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., C. Deser, and M. S. Timlin, 1999: The reemergence of SST anomalies in the North Pacific Ocean. J. Climate, 12 , 24192433.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39 , 179229.

  • Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O’Neill, 2003a: Stratospheric memory and skill of extended-range weather forecasts. Science, 301 , 636640.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., D. W. J. Thompson, E. F. Shuckburgh, W. A. Norton, and N. P. Gillett, 2003b: Weather from the stratosphere? Science, 301 , 317.

    • Search Google Scholar
    • Export Citation
  • Barnston, A., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency circulation patterns. Mon. Wea. Rev., 115 , 10831126.

    • Search Google Scholar
    • Export Citation
  • Barreiro, M., P. Chang, and R. Saravanan, 2002: Variability of the South Atlantic convergence zone simulated by an atmospheric general circulation model. J. Climate, 15 , 745763.

    • Search Google Scholar
    • Export Citation
  • Barreiro, M., A. Giannini, P. Chang, and R. Saravanan, 2004: On the role of South Atlantic atmospheric circulation in tropical Atlantic variability. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 143–152.

  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55 , 477493.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1964: Atlantic air–sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 1–82.

  • Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18 , 821828.

    • Search Google Scholar
    • Export Citation
  • Bladé, I., 1997: The influence of midlatitude ocean–atmosphere coupling on the low-frequency variability of a GCM. Part I: No tropical SST forcing. J. Climate, 10 , 20872106.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and D. S. Battisti, 2000: An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution. Geophys. Res. Lett., 27 , 767770.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. H. Huang, 1994: Warm events in the tropical Atlantic. J. Phys. Oceanogr., 24 , 888903.

  • Cassou, C., C. Deser, L. Terray, J. W. Hurrell, and M. Drévillon, 2004: Summer sea surface temperature conditions in the North Atlantic and their impact upon the atmospheric circulation in early winter. J. Climate, 17 , 33493363.

    • Search Google Scholar
    • Export Citation
  • Cazes-Boezio, G., A. W. Robertson, and C. R. Mechoso, 2003: Seasonal dependence of ENSO teleconnections over South America and relationships with precipitation in Uruguay. J. Climate, 16 , 11591176.

    • Search Google Scholar
    • Export Citation
  • Chang, P., R. Saravanan, L. Ji, and G. C. Hegerl, 2000: The effect of local sea surface temperatures on the atmospheric circulation over the tropical Atlantic sector. J. Climate, 13 , 21952216.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, and R. Saravanan, 2001: A hybrid coupled model study of tropical Atlantic variability. J. Climate, 14 , 361390.

  • Chang, P., R. Saravanan, and L. Ji, 2003: Tropical Atlantic seasonal predictability: The roles of El Nino remote influence and thermodynamic air–sea feedback. Geophys. Res. Lett., 30 .1501, doi:10.1029/2002GL016119.

    • Search Google Scholar
    • Export Citation
  • Chen, P., and W. A. Robinson, 1992: Propagation of planetary waves between the troposphere and stratosphere. J. Atmos. Sci., 49 , 25332545.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15 , 26162631.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., Y. Kushnir, and A. Giannini, 2002: Deconstructing Atlantic ITCZ variability: Influence of the local cross-equatorial SST gradient, and remote forcing from the eastern equatorial Pacific. J. Geophys. Res., 107 .4004, doi:10.1029/2000JD000307.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and D. Entekhabi, 1999: Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett., 26 , 345348.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15 , 606623.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., P. van der Vaart, and J. Marshall, 2002: A diagnostic study of the role of remote forcing in tropical Atlantic variability. J. Climate, 15 , 32803290.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J. Climate, 6 , 17431753.

    • Search Google Scholar
    • Export Citation
  • DeWeaver, E., and S. Nigam, 2000: Zonal-eddy dynamics of the North Atlantic Oscillation. J. Climate, 13 , 38933914.

  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Nino Southern Oscillation. J. Geophys. Res., 102C , 929945.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nunez, D. A. Mayer, and L. Cid-Serrano, 1999: How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? J. Geophys. Res., 104C , 78417848.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2000a: The timescale, power spectra, and climate noise properties of teleconnection patterns. J. Climate, 13 , 44304440.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2000b: Is interannual zonal mean flow variability simply climate noise? J. Climate, 13 , 23562362.

  • Fontaine, B., and S. Bigot, 1993: West African rainfall deficits and sea-surface temperatures. Int. J. Climatol., 13 , 271285.

  • Franzke, C., S. Lee, and S. B. Feldstein, 2004: Is the North Atlantic Oscillation a breaking wave? J. Atmos. Sci., 61 , 145160.

  • Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302 , 10271030.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2004: The preconditioning role of Tropical Atlantic variability in the development of the ENSO teleconnection: Implications for the prediction of Nordeste rainfall. Climate Dyn., 22 , 839855.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and S. J. Mason, 2002: Sensitivity of seasonal climate forecasts to persisted SST anomalies. Climate Dyn., 19 , 619631.

  • Goldenberg, S. B., and L. J. Shapiro, 1996: Physical mechanisms for the association of El Nino and West African rainfall with Atlantic major hurricane activity. J. Climate, 9 , 11691187.

    • Search Google Scholar
    • Export Citation
  • Gong, G., D. Entekhabi, and J. Cohen, 2003: Relative impacts of Siberian and North American snow anomalies on the winter Arctic Oscillation. Geophys. Res. Lett., 30 .1209, doi:10.1029/2002GL016135.

    • Search Google Scholar
    • Export Citation
  • Gong, G., D. Entekhabi, and J. Cohen, 2004: Orographic constraints on a modeled Siberian snow–tropospheric–stratospheric teleconnection pathway. J. Climate, 17 , 11761189.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., E. J. D. Campos, and F. Molteni, 2003: Atmospheric response to South Atlantic SST dipole. Geophys. Res. Lett., 30 .1864, doi:10.1029/2003GL017829.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 1978: On modes of tropical circulation and climate anomalies. J. Atmos. Sci., 35 , 22222231.

  • Hastenrath, S., 1984: Interannual variability and annual cycle—Mechanisms of circulation and climate in the tropical Atlantic sector. Mon. Wea. Rev., 112 , 10971107.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 2000: Upper air mechanisms of the Southern Oscillation in the tropical Atlantic sector. J. Geophys. Res., 105 , 1499715009.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 2002: Dipoles, temperature gradients, and tropical climate anomalies. Bull. Amer. Meteor. Soc., 83 , 735738.

  • Hastenrath, S., L. C. Castro, and P. Acietuno, 1987: The Southern Oscillation in the tropical Atlantic sector. Contrib. Atmos. Phys., 60 , 447463.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shines, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48 , 651680.

    • Search Google Scholar
    • Export Citation
  • Hirst, A. C., and S. Hastenrath, 1983: Atmosphere ocean mechanisms of climate anomalies in the Angola tropical Atlantic sector. J. Phys. Oceanogr., 13 , 11461157.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. W. Hurrell, and T. Y. Xu, 2001: Tropical origins for recent North Atlantic climate change. Science, 292 , 9092.

  • Hoerling, M. P., J. W. Hurrell, T. Y. Xu, G. T. Bates, and A. S. Phillips, 2004: Twentieth century North Atlantic climate change. Part II: Understanding the effect of the Indian Ocean warming. Climate Dyn., 23 , 391405.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and H. C. Tan, 1980: The Influence of the equatorial quasi-biennial oscillation on the global circulation at 50 Mb. J. Atmos. Sci., 37 , 22002208.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • Houghton, R. W., and Y. M. Tourre, 1992: Characteristic low-frequency sea surface temperature fluctuations in the tropical Atlantic. J. Climate, 5 , 765771.

    • Search Google Scholar
    • Export Citation
  • Huang, B. H., and J. Shukla, 1997: Characteristics of the interannual and decadal variability in a general circulation model of the tropical Atlantic Ocean. J. Phys. Oceanogr., 27 , 16931712.

    • Search Google Scholar
    • Export Citation
  • Huang, B. H., P. S. Schopf, and Z. Q. Pan, 2002: The ENSO effect on the tropical Atlantic variability: A regionally coupled model study. Geophys. Res. Lett., 29 .2039, doi:10.1029/2002GL014872.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North-Atlantic Oscillation—Regional temperatures and precipitation. Science, 269 , 676679.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2002: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35.

  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103 , 1856718589.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12 , 917932.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., and L. M. Polvani, 2004: Stratosphere–troposphere coupling in a relatively simple AGCM: The role of eddies. J. Climate, 17 , 629639.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7 , 141157.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., and J. M. Wallace, 1989: Low-frequency variability in the Northern Hemisphere winter—Geographical-distribution, structure and time-scale dependence. J. Atmos. Sci., 46 , 31223142.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. T. Sutton, 2002a: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15 , 22332256.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., R. Seager, J. Miller, and J. C. H. Chiang, 2002b: A simple coupled model of tropical Atlantic decadal climate variability. Geophys. Res. Lett., 29 .2133, doi:10.1029/2002GL015874.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1995: Interactions of the tropical oceans. J. Climate, 8 , 952964.

  • Lee, S., and H-K. Kim, 2003: The dynamic relationship between subtropical and eddy-driven jets. J. Climate, 60 , 14901503.

  • Leith, C. E., 1973: The standard error to time-average estimates of climatic means. J. Appl. Meteor., 12 , 10661069.

  • Limpasuvan, V., and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13 , 44144429.

  • Lin, H., and J. Derome, 2003: The atmospheric response to North Atlantic SST anomalies in seasonal prediction experiments. Tellus, 55A , 193207.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20 , 130148.

  • Madden, R. A., 1976: Estimates of the natural variability of time-averaged sea-level pressure. Mon. Wea. Rev., 104 , 942952.

  • Mitchell, T. P., and J. M. Wallace, 1992: The annual cycle in equatorial convection and sea surface temperature. J. Climate, 5 , 11401156.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and S. Hakkinen, 2001: Interannual variability in the tropical Atlantic and linkages to the Pacific. J. Climate, 14 , 27402762.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and J. N. Paegle, 2001: The Pacific–South American modes and their downstream effects. Int. J. Climatol., 21 , 12111229.

  • Moura, A. D., and J. Shukla, 1981: On the dynamics of droughts in northeast Brazil—observations, theory and numerical experiments with a general-circulation model. J. Atmos. Sci., 38 , 26532675.

    • Search Google Scholar
    • Export Citation
  • Murtugudde, R. G., J. Ballabrera-Poy, J. Beauchamp, and A. J. Busalacchi, 2001: Relationship between zonal and meridional modes in the tropical Atlantic. Geophys. Res. Lett., 28 , 44634466.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., C. Chou, and H. Su, 2003: Tropical drought regions in global warming and El Nino teleconnections. Geophys. Res. Lett., 30 .L24204, doi:10.1029/2004GL021072.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and D. Entekhabi, 1987: Rainfall variability in equatorial and southern Africa—Relationships with sea surface temperatures along the southwestern coast of Africa. J. Climate Appl. Meteor., 26 , 561578.

    • Search Google Scholar
    • Export Citation
  • Nobre, P., and J. Shukla, 1996: Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Climate, 9 , 24642479.

    • Search Google Scholar
    • Export Citation
  • O’Sullivan, D., and M. L. Salby, 1990: Coupling of the quasi-biennial oscillation and the extratropical circulation in the stratosphere through planetary wave transport. J. Atmos. Sci., 47 , 650673.

    • Search Google Scholar
    • Export Citation
  • Peng, S. L., W. A. Robinson, and S. L. Li, 2002: North Atlantic SST forcing of the NAO and relationships with intrinsic hemispheric variability. Geophys. Res. Lett., 29 .1276, doi:10.1029/2001GL014043.

    • Search Google Scholar
    • Export Citation
  • Peng, S. L., W. A. Robinson, S. L. Li, and M. P. Hoerling, 2005: Mechanisms of the NAO response to the North Atlantic SST tripole. J. Climate, 18 , 480496.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., and N. Harnik, 2003: Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J. Climate, 16 , 30113026.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., and C. R. Mechoso, 2003: Circulation regimes and low-frequency oscillations in the South Pacific sector. Mon. Wea. Rev., 131 , 15661576.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., C. R. Mechoso, and Y. J. Kim, 2000: The influence of Atlantic sea surface temperature anomalies on the North Atlantic Oscillation. J. Climate, 13 , 122138.

    • Search Google Scholar
    • Export Citation
  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38 , 191219.

  • Rodwell, M. J., 2002: On the predictability of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 173–192.

  • Rodwell, M. J., and C. K. Folland, 2002: Atlantic air–sea interaction and seasonal predictability. Quart. J. Roy. Meteor. Soc., 128 , 14131443.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., D. P. Powell, and C. K. Folland, 1999: Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature, 398 , 320323.

    • Search Google Scholar
    • Export Citation
  • Rouault, M., S. A. White, C. J. C. Reason, J. R. E. Lutjeharms, and I. Jobard, 2002: Ocean–atmosphere interaction in the Agulhas Current region and a south African extreme weather event. Wea. Forecasting, 17 , 655669.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., J. A. Carton, and S. Nigam, 2000: Structure of interannual-to-decadal climate variability in the tropical Atlantic sector. J. Climate, 12 , 143.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., and P. Chang, 2000: Interactions between tropical Atlantic variability and El Nino–Southern Oscillation. J. Climate, 13 , 21772194.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., and P. Chang, 2004: Thermodynamic coupling and predictability of tropical sea surface temperature. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 171–180.

  • Seager, R., Y. Kushnir, M. Visbeck, N. Naik, J. Miller, G. Krahmann, and H. Cullen, 2000: Causes of Atlantic Ocean climate variability between 1958 and 1998. J. Climate, 13 , 28452862.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, P. Chang, N. H. Naik, J. Miller, and W. Hazeleger, 2001: Looking for the role of the ocean in tropical Atlantic decadal climate variability. J. Climate, 14 , 638655.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnir, W. A. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16 , 29602978.

    • Search Google Scholar
    • Export Citation
  • Servain, J., 1991: Simple climatic indices for the tropical Atlantic Ocean and some applications. J. Geophys. Res., 96 , 1513715146.

  • Servain, J., I. Wainer, J. P. McCreary, and A. Dessier, 1999: Relationship between the equatorial and meridional modes of climatic variability in the tropical Atlantic. Geophys. Res. Lett., 26 , 485488.

    • Search Google Scholar
    • Export Citation
  • Servain, J., I. Wainer, H. L. Ayina, and H. Roquet, 2000: The relationship between the simulated climatic variability modes of the tropical Atlantic. Int. J. Climatol., 20 , 939953.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and S. B. Goldenberg, 1998: Atlantic sea surface temperatures and tropical cyclone formation. J. Climate, 11 , 578590.

    • Search Google Scholar
    • Export Citation
  • Song, Y., and W. A. Robinson, 2004: Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci., 61 , 17111725.

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G., K. Hamilton, A. Robock, V. Ramaswamy, and M. D. Schwarzkopf, 2004: Arctic Oscillation response to the 1991 Pinatubo eruption in the SKYHI general circulation model with a realistic quasi-biennial oscillation. J. Geophys. Res., 109 .D03112, doi:10.1029/2003JD003699.

    • Search Google Scholar
    • Export Citation
  • Sterl, A., and W. Hazeleger, 2003: Coupled variability and air–sea interaction in the South Atlantic Ocean. Climate Dyn., 21 , 559571.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2003: Influence of the oceans on North Atlantic climate variability 1871–1999. J. Climate, 16 , 32963313.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., S. P. Jewson, and D. P. Rowell, 2000: The elements of climate variability in the tropical Atlantic region. J. Climate, 13 , 32613284.

    • Search Google Scholar
    • Export Citation
  • Tanaka, H. L., and H. Tokinaga, 2002: Baroclinic instability in high latitudes induced by polar vortex: A connection to the Arctic Oscillation. J. Atmos. Sci., 59 , 6982.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293 , 8589.

  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N. C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103C , 1429114324.

    • Search Google Scholar
    • Export Citation
  • Venegas, S. A., L. A. Mysak, and D. N. Straub, 1997: Atmosphere–ocean coupled variability in the South Atlantic. J. Climate, 10 , 29042920.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., E. P. Chassignet, R. G. Curry, T. L. Delworth, R. R. Dickson, and G. Krahmann, 2002: The ocean’s response to North Atlantic Oscillation variability. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 113–145.

  • Walker, G. T., 1924: Correlations in seasonal variations of weather IX. Mem. Ind. Meteor. Dept., 24 , 687692.

  • Walker, G. T., and E. W. Bliss, 1932: World Weather V. Mem. Roy. Meteor. Soc., 4 , 5384.

  • Wallace, J. M., 2000: North Atlantic Oscillation/Annular Mode: Two paradigms–one phenomenon. Quart. J. Roy. Meteor. Soc., 126 , 791805.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109 , 784812.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5 , 561576.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., 1999: A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J. Climate, 12 , 6470.

  • Xie, S-P., and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Ocean–Atmosphere Interaction and Climate Variability, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 121–142.

  • Zebiak, S. E., 1993: Air–sea interaction in the equatorial Atlantic region. J. Climate, 6 , 15671568.