Climatology of Upper-Tropospheric Relative Humidity from the Atmospheric Infrared Sounder and Implications for Climate

Andrew Gettelman National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Andrew Gettelman in
Current site
Google Scholar
PubMed
Close
,
William D. Collins National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by William D. Collins in
Current site
Google Scholar
PubMed
Close
,
Eric J. Fetzer NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Eric J. Fetzer in
Current site
Google Scholar
PubMed
Close
,
Annmarie Eldering NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Annmarie Eldering in
Current site
Google Scholar
PubMed
Close
,
Fredrick W. Irion NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Fredrick W. Irion in
Current site
Google Scholar
PubMed
Close
,
Phillip B. Duffy Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Phillip B. Duffy in
Current site
Google Scholar
PubMed
Close
, and
Govindasamy Bala Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Govindasamy Bala in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recently available satellite observations from the Atmospheric Infrared Sounder (AIRS) are used to calculate relative humidity in the troposphere. The observations illustrate many scales of variability in the atmosphere from the seasonal overturning Hadley–Walker circulation to high-frequency transient variability associated with baroclinic storms with high vertical resolution. The Asian monsoon circulation has a strong impact on upper-tropospheric humidity, with large humidity gradients to the west of the monsoon. The vertical structure of humidity is generally bimodal, with high humidity in the upper and lower troposphere, and a dry middle troposphere. The highest variances in humidity are seen around the midlatitude tropopause. AIRS data are compared to a simulation from a state-of-the-art climate model. The model does a good job of reproducing the mean humidity distribution but is slightly moister than the observations in the middle and upper troposphere. The model has difficultly reproducing many scales of observed variability, particularly in the Tropics. Differences in humidity imply global differences in the top of atmosphere fluxes of ∼1 W m−2.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Andrew Gettelman, National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO 80305. Email: andrew@ucar.edu

Abstract

Recently available satellite observations from the Atmospheric Infrared Sounder (AIRS) are used to calculate relative humidity in the troposphere. The observations illustrate many scales of variability in the atmosphere from the seasonal overturning Hadley–Walker circulation to high-frequency transient variability associated with baroclinic storms with high vertical resolution. The Asian monsoon circulation has a strong impact on upper-tropospheric humidity, with large humidity gradients to the west of the monsoon. The vertical structure of humidity is generally bimodal, with high humidity in the upper and lower troposphere, and a dry middle troposphere. The highest variances in humidity are seen around the midlatitude tropopause. AIRS data are compared to a simulation from a state-of-the-art climate model. The model does a good job of reproducing the mean humidity distribution but is slightly moister than the observations in the middle and upper troposphere. The model has difficultly reproducing many scales of observed variability, particularly in the Tropics. Differences in humidity imply global differences in the top of atmosphere fluxes of ∼1 W m−2.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Andrew Gettelman, National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO 80305. Email: andrew@ucar.edu

Save
  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41 , 253264.

    • Search Google Scholar
    • Export Citation
  • Bates, J. J., and D. L. Jackson, 2001: Trends in upper-tropospheric humidity. Geophys. Res. Lett., 28 , 16951698.

  • Collins, W. D., J. K. Hackney, and D. P. Edwards, 2002: An updated parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere Model. J. Geophys. Res., 107 .4664, doi:10.1029/2001JD001365.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The formulation and atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3). J. Climate, 19 , 21222143.

    • Search Google Scholar
    • Export Citation
  • Divakarla, M. G., C. D. Barnet, M. D. Goldberg, L. M. McMillin, E. Maddy, W. Wolf, L. Zhou, and X. Liu, 2006: Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res., 111 .D09S15, doi:10.1029/2005JD006116.

    • Search Google Scholar
    • Export Citation
  • Eckhardt, S., A. Stohl, H. Wernli, P. James, C. Forster, and N. Spichtinger, 2004: A 15-year climatology of warm conveyor belts. J. Climate, 17 , 218237.

    • Search Google Scholar
    • Export Citation
  • Eguchi, N., and M. Shiotani, 2004: Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphere. J. Geophys. Res., 109 .D12106, doi:10.1029/2003JD004314.

    • Search Google Scholar
    • Export Citation
  • Elliot, W. P., and D. J. Gaffen, 1991: On the utility of radiosonde humidity for climate studies. Bull. Amer. Meteor. Soc., 72 , 15071520.

    • Search Google Scholar
    • Export Citation
  • Fetzer, E., and Coauthors, 2003: AIRS/AMSU/HSB validation. IEEE Trans. Geosci. Remote Sens., 41 , 418431.

  • Gettelman, A., and Coauthors, 2004: Validation of Aqua satellite data in the upper troposphere and lower stratosphere with in situ aircraft instruments. Geophys. Res. Lett., 109 .L22107, doi:10.1029/2004GL020730.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., E. J. Fetzer, A. Eldering, and F. W. Irion, 2006a: The global distribution of supersaturation in the upper troposphere from the Atmospheric Infrared Sounder. J. Climate, 19 , 60896103.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., V. P. Walden, L. M. Miloshevich, W. L. Roth, and B. Halter, 2006b: Relative humidity over Antarctica from radiosondes, satellites, and a general circulation model. J. Geophys. Res., 111 .D09S13, doi:10.1029/2005JD006636.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and S. Gratch, 1946: Low-pressure properties of water from −160°F to 212°F. Trans. Amer. Soc. Heat. Vent. Eng., 52 , 95121.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud–climate feedback. Geophys. Res. Lett., 29 .1951, doi:10.1029/2002GL015835.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and M. L. Michelsen, 2002: No evidence for iris. Bull. Amer. Meteor. Soc., 83 , 249254.

  • Jackson, D. L., and J. J. Bates, 2001: Upper tropospheric humidity algorithm assessment. J. Geophys. Res., 106 , 3225932270.

  • Jensen, E. J., and Coauthors, 2000: Prevalence of ice supersaturated regions in the upper tropopshere: Implications for optically thin ice cloud formation. J. Geophys. Res., 106 , 1725317266.

    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., H. Vömel, D. N. Whiteman, B. M. Lesht, F. J. Schmidlin, and F. Russo, 2006: Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G, and implications for AIRS validation. J. Geophys. Res., 111 .D09S10, doi:10.1029/2005JD006083.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., H. L. Clark, T. J. Dunkerton, R. S. Harwood, and H. C. Pumphrey, 2000: Intraseasonal variations of water vapor in the tropical upper troposphere and tropopause region. J. Geophys. Res., 105 , 1745717470.

    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., and T. Koop, 2005: Review of the vapour pressure of ice and supercooled water for atmospheric applications. Quart. J. Roy. Meteor. Soc., 131 , 15391565.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and M. Park, 2006: Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J. Geophys. Res., 111 .D12314, doi:10.1029/2005JD006490.

    • Search Google Scholar
    • Export Citation
  • Read, W. G., J. W. Waters, D. A. Flower, L. Froidevaux, R. F. Jarnot, D. L. Hartmann, R. S. Harwood, and R. B. Rood, 1995: Upper tropospheric water vapor from UARS MLS. Bull. Amer. Meteor. Soc., 76 , 23812389.

    • Search Google Scholar
    • Export Citation
  • Read, W. G., and Coauthors, 2001: UARS microwave limb sounder upper tropospheric humidity measurement: Method and validation. J. Geophys. Res., 106 , 3220732258.

    • Search Google Scholar
    • Export Citation
  • Rind, D., E. W. Chiou, W. Chu, S. Oltmans, J. Lerner, J. Larson, M. P. McCormick, and L. McMaster, 1993: Overview of the stratospheric aerosol and gas experiment ii water vapor observations: Method, validation, and data characteristics. J. Geophys. Res., 98 , 48354856.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and F. P. Bretherton, 1994: Evaluation of water vapor distribution in general circulation models using satellite observations. J. Geophys. Res., 99 , 11871210.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and R. Fu, 1995: A satellite analysis of deep convection, upper-tropospheric humidity, and the greenhouse effect. J. Climate, 8 , 23332350.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and J. R. Lazante, 1996: An assessment of satellite and radiosonde climatologies of upper-tropospheric water vapor. J. Climate, 9 , 12351250.

    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and H. Wernli, 2003: A northern hemispheric climatology of cross-tropopause exchange for the ERA15 time period (1979–1993). J. Geophys. Res., 108 .8521, doi:10.1029/2002JD002636.

    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. D. Barnet, and J. M. Blaisdell, 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Remote Sens., 41 , 390409.

    • Search Google Scholar
    • Export Citation
  • Tobin, D. C., and Coauthors, 2006: Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. J. Geophys. Res., 111 .D09S14, doi:10.1029/2005JD006103.

    • Search Google Scholar
    • Export Citation
  • Udelhofen, P. M., and D. L. Hartmann, 1995: Influence of tropical cloud systems on the relative humidity of the upper troposphere. J. Geophys. Res., 100 , 74237440.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., 2005: Impact of potential vorticity intrusions on subtropical upper tropospheric humidity. J. Geophys. Res., 110 .D11305, doi:10.1029/2004JD005664.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 858 288 24
PDF Downloads 603 129 22