The Role of Oceanic Heat Advection in the Evolution of Tropical North and South Atlantic SST Anomalies

Gregory R. Foltz NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Search for other papers by Gregory R. Foltz in
Current site
Google Scholar
PubMed
Close
and
Michael J. McPhaden NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Search for other papers by Michael J. McPhaden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The role of horizontal oceanic heat advection in the generation of tropical North and South Atlantic sea surface temperature (SST) anomalies is investigated through an analysis of the oceanic mixed layer heat balance. It is found that SST anomalies poleward of 10° are driven primarily by a combination of wind-induced latent heat loss and shortwave radiation. Away from the eastern boundary, horizontal advection damps surface flux–forced SST anomalies due to a combination of mean meridional Ekman currents acting on anomalous meridional SST gradients, and anomalous meridional currents acting on the mean meridional SST gradient. Horizontal advection is likely to have the most significant effect on the interhemispheric SST gradient mode through its impact in the 10°–20° latitude bands of each hemisphere, where the variability in advection is strongest and its negative correlation with the surface heat flux is highest. In addition to the damping effect of horizontal advection in these latitude bands, evidence for coupled wind–SST feedbacks is found, with anomalous equatorward (poleward) SST gradients contributing to enhanced (reduced) westward surface winds and an equatorward propagation of SST anomalies.

* Pacific Marine Environmental Laboratory Contribution Number 2914

Corresponding author address: Gregory R. Foltz, NOAA/Pacific Marine Environmental Laboratory, 7600 Sand Point Way NE, Seattle, WA 98115. Email: gregory.foltz@noaa.gov

Abstract

The role of horizontal oceanic heat advection in the generation of tropical North and South Atlantic sea surface temperature (SST) anomalies is investigated through an analysis of the oceanic mixed layer heat balance. It is found that SST anomalies poleward of 10° are driven primarily by a combination of wind-induced latent heat loss and shortwave radiation. Away from the eastern boundary, horizontal advection damps surface flux–forced SST anomalies due to a combination of mean meridional Ekman currents acting on anomalous meridional SST gradients, and anomalous meridional currents acting on the mean meridional SST gradient. Horizontal advection is likely to have the most significant effect on the interhemispheric SST gradient mode through its impact in the 10°–20° latitude bands of each hemisphere, where the variability in advection is strongest and its negative correlation with the surface heat flux is highest. In addition to the damping effect of horizontal advection in these latitude bands, evidence for coupled wind–SST feedbacks is found, with anomalous equatorward (poleward) SST gradients contributing to enhanced (reduced) westward surface winds and an equatorward propagation of SST anomalies.

* Pacific Marine Environmental Laboratory Contribution Number 2914

Corresponding author address: Gregory R. Foltz, NOAA/Pacific Marine Environmental Laboratory, 7600 Sand Point Way NE, Seattle, WA 98115. Email: gregory.foltz@noaa.gov

Save
  • Carton, J. A., and B. H. Huang, 1994: Warm events in the tropical Atlantic. J. Phys. Oceanogr., 24 , 888903.

  • Carton, J. A., X. H. Cao, B. S. Giese, and A. M. daSilva, 1996: Decadal and interannual SST variability in the tropical Atlantic Ocean. J. Phys. Oceanogr., 26 , 11651175.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, and R. Saravanan, 2001: A hybrid coupled model study of tropical Atlantic variability. J. Climate, 14 , 361390.

  • Cheney, R., L. Miller, R. Agreen, N. Doyle, and J. Lillibridge, 1994: TOPEX/Poseidon: The 2-cm solution. J. Geophys. Res., 99 , 2455524563.

    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., and Y. Tanimoto, 2005: Role of specific humidity anomalies in Caribbean SST response to ENSO. J. Meteor. Soc. Japan, 83 , 959975.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., P. Van der Vaart, and J. Marshall, 2002: A diagnostic study of the role of remote forcing in tropical Atlantic variability. J. Climate, 15 , 32803290.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109 .C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105 , 1947719498.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., and M. J. McPhaden, 2005: Mixed layer heat balance on intraseasonal time scales in the northwestern tropical Atlantic Ocean. J. Climate, 18 , 41684184.

    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., S. A. Grodsky, J. A. Carton, and M. J. McPhaden, 2003: Seasonal mixed layer heat budget of the tropical Atlantic Ocean. J. Geophys. Res., 108 .3146, doi:10.1029/2002JC001584.

    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., and J. A. Carton, 2001: Intense surface currents in the tropical Pacific. J. Geophys. Res., 106 , 1667316684.

  • Hastenrath, S., and L. Greischar, 1993: Circulation mechanisms related to Northeast Brazil rainfall anomalies. J. Geophys. Res., 98 , 50935102.

    • Search Google Scholar
    • Export Citation
  • Huang, B. H., and J. Shukla, 2005: Ocean–atmosphere interactions in the tropical and subtropical Atlantic Ocean. J. Climate, 18 , 16521672.

    • Search Google Scholar
    • Export Citation
  • Huang, B. H., P. S. Schopf, and J. Shukla, 2004: Intrinsic ocean–atmosphere variability of the tropical Atlantic Ocean. J. Climate, 17 , 20582077.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., C. Frankignoul, and J. Y. Yang, 2004: Ocean response and feedback to the SST dipole in the tropical Atlantic. J. Phys. Oceanogr., 34 , 25252540.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6 , 15871606.

  • Lagerloef, G. S. E., G. T. Mitchum, R. B. Lukas, and P. P. Niiler, 1999: Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. J. Geophys. Res., 104 , 2331323326.

    • Search Google Scholar
    • Export Citation
  • Lamb, P. J., 1978: Large-scale tropical Atlantic surface circulation patterns associated with sub-Saharan weather anomalies. Tellus, 30 , 240251.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44 , 24182436.

    • Search Google Scholar
    • Export Citation
  • Moisan, J. R., and P. P. Niiler, 1998: The seasonal heat budget of the North Pacific: Net heat flux and heat storage rates (1950–1990). J. Phys. Oceanogr., 28 , 401421.

    • Search Google Scholar
    • Export Citation
  • Monterey, G. I., and S. Levitus, 1997: Seasonal Variability of Mixed Layer Depth for the World Ocean. NOAA Atlas NESDIS 14, 5 pp. and 87 figs.

  • Nobre, C., and J. Shukla, 1996: Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Climate, 9 , 24642479.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Q. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Rio, M-H., and F. Hernandez, 2004: A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J. Geophys. Res., 109 .C12032, doi:10.1029/2003JC002226.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Barradas, A., J. A. Carton, and S. Nigam, 2000: Structure of interannual-to-decadal climate variability in the tropical Atlantic sector. J. Climate, 13 , 32853297.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, P. Chang, N. Naik, J. Miller, and W. Hazeleger, 2001: Looking for the role of the ocean in tropical Atlantic decadal climate variability. J. Climate, 14 , 638655.

    • Search Google Scholar
    • Export Citation
  • Servain, J., 1991: Simple climatic indices for the tropical Atlantic Ocean and some applications. J. Geophys. Res., 96 , 1513715146.

  • Servain, J., A. J. Busalacchi, M. J. McPhaden, A. D. Moura, G. Reverdin, M. Vianna, and S. E. Zebiak, 1998: A Pilot Research Moored Array in the Tropical Atlantic (PIRATA). Bull. Amer. Meteor. Soc., 79 , 20192031.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and J. K. Gibson, 2000: The ERA-40 project plan. Tech. Rep., ECMWF, Reading, United Kingdom, 62 pp.

  • Sprintall, J., and M. Tomczak, 1992: Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res., 97 , 73057316.

    • Search Google Scholar
    • Export Citation
  • Tanimoto, Y., and S. P. Xie, 2002: Inter-hemispheric decadal variations in SST, surface wind, heat flux, and cloud cover over the Atlantic Ocean. J. Meteor. Soc. Japan, 80 , 11991219.

    • Search Google Scholar
    • Export Citation
  • Wang, W. M., and M. J. McPhaden, 1999: The surface-layer heat balance in the equatorial Pacific Ocean. Part I: Mean seasonal cycle. J. Phys. Oceanogr., 29 , 18121831.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.

  • Xie, S-P., 1999: A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J. Climate, 12 , 6470.

  • Xie, S-P., and Y. Tanimoto, 1998: A pan-Atlantic decadal climate oscillation. Geophys. Res. Lett., 25 , 21852188.

  • Yu, L. S., R. A. Weller, and B. M. Sun, 2004: Improving latent and sensible heat flux estimates for the Atlantic Ocean (1988–99) by a synthesis approach. J. Climate, 17 , 373393.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109 .D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1263 693 40
PDF Downloads 618 129 13