Modulation of Tropical Intraseasonal Oscillations by Ocean–Atmosphere Coupling

K. Rajendran Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by K. Rajendran in
Current site
Google Scholar
PubMed
Close
and
A. Kitoh Meteorological Research Institute, Tsukuba, Ibaraki, Japan

Search for other papers by A. Kitoh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of ocean–atmosphere coupling on the structure and propagation characteristics of 30–60-day tropical intraseasonal oscillations (TISOs) is investigated by analyzing long-term simulations of the Meteorological Research Institute coupled general circulation model (CGCM) and its stand-alone atmospheric general circulation model (AGCM) version forced with SSTs derived from the CGCM and comparing them with recent observation datasets [Global Precipitation Climatology Project (GPCP) precipitation, 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), and Reynolds SST]. Composite events of (i) eastward propagating Madden–Julian oscillations (MJOs) during boreal winter and (ii) northward propagating intraseasonal oscillations (NPISOs) during boreal summer, constructed based on objective criteria, show that the three-dimensional structure, amplitude, and speed of propagation, and the phase relationship among surface fluxes, SST, and convection, are markedly improved in the CGCM simulation.

Consistent with the frictional wave conditional instability of the second kind mechanism, successive development of low-level convergence to the east (north) of deep convection was found to be important for eastward (northward) propagation of MJO (NPISO). Complex interaction between large-scale dynamics and convection reveals the importance of atmospheric dynamics and suggests that they are intrinsic modes in the atmosphere where coupling is not essential for their existence. However, as in observations, realistic coupling in the CGCM is found to result in the evolution of TISOs as coupled modes through a coherent coupled feedback process. This acts as an amplifying mechanism for the existing propagating convective anomalies and plays an important modifying role toward a more realistic simulation of TISOs. In contrast, the simulated TISOs in its atmosphere-alone component lack many of the important features associated with their amplitude, phase, and life cycle. Thus, a realistic representation of the interaction between sea surface and the atmospheric boundary layer is crucial for a better simulation of TISOs.

Corresponding author address: Dr. K. Rajendran, Meteorological Research Institute/JMA, 1-1 Nagamine, Tsukuba, Ibaraki 305 0051, Japan. Email: rajend@mri-jma.go.jp

Abstract

The impact of ocean–atmosphere coupling on the structure and propagation characteristics of 30–60-day tropical intraseasonal oscillations (TISOs) is investigated by analyzing long-term simulations of the Meteorological Research Institute coupled general circulation model (CGCM) and its stand-alone atmospheric general circulation model (AGCM) version forced with SSTs derived from the CGCM and comparing them with recent observation datasets [Global Precipitation Climatology Project (GPCP) precipitation, 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), and Reynolds SST]. Composite events of (i) eastward propagating Madden–Julian oscillations (MJOs) during boreal winter and (ii) northward propagating intraseasonal oscillations (NPISOs) during boreal summer, constructed based on objective criteria, show that the three-dimensional structure, amplitude, and speed of propagation, and the phase relationship among surface fluxes, SST, and convection, are markedly improved in the CGCM simulation.

Consistent with the frictional wave conditional instability of the second kind mechanism, successive development of low-level convergence to the east (north) of deep convection was found to be important for eastward (northward) propagation of MJO (NPISO). Complex interaction between large-scale dynamics and convection reveals the importance of atmospheric dynamics and suggests that they are intrinsic modes in the atmosphere where coupling is not essential for their existence. However, as in observations, realistic coupling in the CGCM is found to result in the evolution of TISOs as coupled modes through a coherent coupled feedback process. This acts as an amplifying mechanism for the existing propagating convective anomalies and plays an important modifying role toward a more realistic simulation of TISOs. In contrast, the simulated TISOs in its atmosphere-alone component lack many of the important features associated with their amplitude, phase, and life cycle. Thus, a realistic representation of the interaction between sea surface and the atmospheric boundary layer is crucial for a better simulation of TISOs.

Corresponding author address: Dr. K. Rajendran, Meteorological Research Institute/JMA, 1-1 Nagamine, Tsukuba, Ibaraki 305 0051, Japan. Email: rajend@mri-jma.go.jp

Save
  • Anderson, J. R., D. E. Stevens, and P. R. Julian, 1984: Temporal variations of the tropical 40–50 day oscillation. Mon. Wea. Rev., 112 , 24312438.

    • Search Google Scholar
    • Export Citation
  • Chen, T. C., R. Y. Tzeng, and M. C. Yen, 1988: Developement and life cycle of the Indian monsoon: Effect of the 30–50 day oscillation. Mon. Wea. Rev., 116 , 21832199.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18 , 10161022.

  • Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niler, 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. J. Atmos. Sci., 54 , 23732386.

    • Search Google Scholar
    • Export Citation
  • Fu, X., and B. Wang, 2004: The boreal-summer intraseasonal oscillations simulated in a hybrid coupled atmosphere–ocean model. Mon. Wea. Rev., 132 , 26282649.

    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, T. Li, and J. P. McCreary, 2003: Coupling between northward-propagating, intraseasonal oscillations and seas surface temperature in the Indian Ocean. J. Atmos. Sci., 60 , 17331753.

    • Search Google Scholar
    • Export Citation
  • Gadgil, S., 2003: The Indian monsoon and its variability. Ann. Rev. Earth Planet. Sci., 31 , 429467.

  • Gadgil, S., and J. Srinivasan, 1990: Low frequency variation of tropical convergence zone. Meteor. Atmos. Phys., 44 , 119132.

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

  • Goswami, B. N., and J. Shukla, 1984: Quasiperiodic oscillations in a symmetric general circulation model. J. Atmos. Sci., 41 , 2037.

  • Hartmann, D. L., and J. R. Gross, 1988: Seasonal variability of the 40–50 day oscillation in wind and rainfall in the tropics. J. Atmos. Sci., 45 , 26802702.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1982: Space–time spectral analysis and its application to atmospheric waves. J. Meteor. Soc. Japan, 60 , 156171.

  • Hendon, H. H., 1988: A simple model of the 40–50 day oscillation. J. Atmos. Sci., 45 , 569584.

  • Hendon, H. H., 2000: Impact of air–sea coupling on the Madden–Julian oscillation in a general circulation model. J. Atmos. Sci., 57 , 39393952.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51 , 22252237.

  • Hendon, H. H., and J. Glick, 1997: Intraseasonal air–sea interaction in the tropical Indian and Pacific Oceans. J. Climate, 10 , 647661.

    • Search Google Scholar
    • Export Citation
  • Hsu, H. H., C. H. Weng, and C. H. Wu, 2004: Contrasting characteristics between the northward and eastward propagation of the intraseasonal oscillation during the boreal summer. J. Climate, 17 , 727743.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2 , 3650.

    • Search Google Scholar
    • Export Citation
  • Inness, P. M., J. M. Slingo, E. Guilyardi, and J. Cole, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16 , 365382.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17 , 10221039.

    • Search Google Scholar
    • Export Citation
  • Jones, C., and B. C. Weare, 1996: The role of low-level moisture convergence and ocean latent heat fluxes in the Madden–Julian oscillation: An observational analysis using ISCCP data and ECMWF analyses. J. Climate, 9 , 30863104.

    • Search Google Scholar
    • Export Citation
  • Jones, C., D. E. Waliser, and C. Gautier, 1998: The influence of the Madden–Julian oscillation on ocean surface heat fluxes and sea surface temperature. J. Climate, 11 , 10571072.

    • Search Google Scholar
    • Export Citation
  • Kang, I. S., and Coauthors, 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Climate Dyn., 19 , 383395.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., B. Wang, and X. Fu, 2002: Simulation of the intraseasonal oscillation in ECHAM-4 model: The impact of coupling with an ocean model. J. Atmos. Sci., 59 , 14331453.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., and O. Arakawa, 1999: On overestimation of tropical precipitation by an atmospheric GCM with prescribed SST. Geophys. Res. Lett., 26 , 29652968.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and D. Subrahmanyam, 1982: The 30–50 day mode at 850 mb during MONEX. J. Atmos. Sci., 39 , 20882095.

  • Krishnamurti, T. N., P. K. Jayakumar, J. Sheng, N. Surgi, and A. Kumar, 1985: Divergent circulations on the 30 to 50 day time scale. J. Atmos. Sci., 42 , 364375.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., D. K. Oosterhof, and A. V. Mehta, 1988: Air–sea interaction on the time scale of 30 to 50 days. J. Atmos. Sci., 45 , 13041322.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and P. H. Chan, 1986: Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114 , 13541367.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillation in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44 , 950972.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and C. H. Sui, 1997: Mechanisms for short-term sea surface temperature regulation: Observations during TOGA COARE. J. Climate, 10 , 465472.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59 , 15931606.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 1986: Seasonal variations of the 40–50 day oscillation in the tropics. J. Atmos. Sci., 43 , 31383158.

  • Madden, R. A., and P. R. Julian, 1971: Description of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28 , 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29 , 11091123.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50 day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11 , 23872403.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2543.

  • Mellor, G. L., and P. A. Durbin, 1975: The structure and dynamics of the ocean surface mixed layer. J. Phys. Oceanogr., 5 , 718728.

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Murakami, M., 1976: Analysis of summer monsoon fluctuations over India. J. Meteor. Soc. Japan, 54 , 1532.

  • Murakami, T., and T. Nakazawa, 1985: Tropical 45 day oscillations during the 1979 northern hemisphere summer. J. Atmos. Sci., 42 , 11071122.

    • Search Google Scholar
    • Export Citation
  • Nanjundiah, R. S., J. Srinivasan, and S. Gadgil, 1992: Intraseasonal variation of the Indian summer monsoon. II: Theoretical aspects. J. Meteor. Soc. Japan, 70 , 529550.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1995: Characteristics of 4–20 day period disturbances observed in the equatorial Pacific during the TOGA COARE IOP. J. Meteor. Soc. Japan, 73 , 353377.

    • Search Google Scholar
    • Export Citation
  • Rajendran, K., R. S. Nanjundiah, and J. Srinivasan, 2002: The impact of surface hydrology on the simulation of tropical intraseasonal oscillation in NCAR (CCM2) atmospheric GCM. J. Meteor. Soc. Japan, 80 , 13571381.

    • Search Google Scholar
    • Export Citation
  • Rajendran, K., A. Kitoh, and O. Arakawa, 2004a: Monsoon low frequency intraseasonal oscillation and ocean-atmosphere coupling over the Indian Ocean. Geophys. Res. Lett., 31 .L02210, doi:10.1029/2003GL019031.

    • Search Google Scholar
    • Export Citation
  • Rajendran, K., A. Kitoh, and S. Yukimoto, 2004b: South and East Asian summer monsoon climate and variation in MRI Coupled Model (MRI-CGCM2). J. Climate, 17 , 763782.

    • Search Google Scholar
    • Export Citation
  • Randall, D., and D. M. Pan, 1993: Implementation of the Arakawa–Schubert cumulus parameterization with a prognostic closure. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 145–150.

  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., R. R. Gracia, and H. H. Hendon, 1994: Planetary-scale circulation in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51 , 23442367.

    • Search Google Scholar
    • Export Citation
  • Sengupta, D., B. N. Goswami, and R. Senan, 2001: Coherent intraseasonal oscillations of ocean and atmosphere during the Asian summer monsoon. Geophys. Res. Lett., 28 , 41274130.

    • Search Google Scholar
    • Export Citation
  • Shibata, K., H. Yoshimura, M. Ohizumi, M. Hosaka, and M. Sugi, 1999: A simulation of troposphere, stratosphere and mesosphere with an MRI/JMA98 GCM. Pap. Meteor. Geophys., 50 , 1553.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and J. D. Glick, 1998: Mixed layer modeling of intraseasonal sea surface temperature variability in the tropical western Pacific and Indian Ocean. J. Climate, 11 , 26682685.

    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Mon. Wea. Rev., 108 , 18401853.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and J. K. Gibson, 2000: ERA-40 Project Plan. ECMWF ERA-40 Project Report Series No. 1, 62 pp.

  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillation in 15 atmospheric general circulation models. Results from an AMIP diagnostic subproject. Climate Dyn., 12 , 325357.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., 2004: Madden–Julian variability in NCAR CAM2.0 and CCSM2.0. Climate Dyn., 23 , 259278.

  • Sperber, K. R., J. M. Slingo, P. M. Inness, and W. K. M. Lau, 1997: On the maintenance and initiation of the intraseasonal oscillation in the NCEP/NCAR reanalysis and in the GLA and UKMO AMIP simulations. Climate Dyn., 13 , 769795.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, J., and G. L. Smith, 1996: Meridional migration of tropical convergence zones. J. Appl. Meteor., 35 , 11891202.

  • Srinivasan, J., S. Gadgil, and P. J. Webster, 1993: Meridional propagation of large-scale monsoon convective zones. Meteor. Atmos. Phys., 52 , 1535.

    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equtorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72 , 433448.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., D. Williamson, and F. Zwiers, 2000: The sea surface temperature and sea ice concentration boundary conditions for AMIP II simulations. PCMDI Rep. 60, 25 pp.

  • Vecchi, G. A., and D. E. Harrison, 2002: Monsoon breaks and subseasonal sea surface temperature variability in the Bay of Bengal. J. Climate, 15 , 14851493.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, and J. H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden–Julian oscillation: A model perturbation experiment. J. Atmos. Sci., 56 , 333358.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, and J. H. Kim, 2003: Potential predictability of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 84 , 3350.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci., 47 , 397413.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54 , 7286.

  • Wang, B., and X. Xie, 1998: Coupled modes of the warm pool climate system. Part I: The role of air–sea interaction in maintaining Madden–Julian oscillations. J. Climate, 8 , 21162135.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1983: Mechanisms of monsoon low-frequency variability: Surface hydrological effects. J. Atmos. Sci., 40 , 21102124.

  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56 , 374399.

    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2000: The relationship between convection and sea surface temperature on intraseasonal time scales. J. Climate, 13 , 20862104.

    • Search Google Scholar
    • Export Citation
  • Xie, P., J. E. Janowiak, P. A. Arkin, R. Adler, A. Gruber, R. Ferraro, G. J. Huffman, and S. Curtis, 2003: GPCPC pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16 , 21972214.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57 , 227242.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1981: Structure of the Indian monsoon system with around 40-day period. J. Meteor. Soc. Japan, 59 , 225229.

  • Yukimoto, S., and Coauthors, 2001: The new Meteorological Research Institute coupled GCM (MRI-CGCM2)—Model climate and variability. Pap. Meteor. Geophys., 51 , 4788.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1996: Atmospheric intraseasonal variability at the surface in the tropical western Pacific Ocean. J. Atmos. Sci., 53 , 739758.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and M. J. McPhaden, 1995: On the relationship between sea surface temperature and latent heat flux in the equatorial Pacific. J. Climate, 8 , 589605.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., D. E. Waliser, W. F. Stern, and C. Jones, 2004: The role of coupled sea surface temperatures in the simulation of the tropical intraseasonal oscillation. J. Climate, 17 , 41094134.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 354 196 9
PDF Downloads 111 24 6