Sea Surface Temperature Daytime Climate Analyses Derived from Aerosol Bias-Corrected Satellite Data

Nicholas R. Nalli Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado, and NOAA/NESDIS, Washington, D.C

Search for other papers by Nicholas R. Nalli in
Current site
Google Scholar
PubMed
Close
and
Richard W. Reynolds NOAA/NESDIS/National Climatic Data Center, Asheville, North Carolina

Search for other papers by Richard W. Reynolds in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper describes daytime sea surface temperature (SST) climate analyses derived from 16 years (1985–2000) of reprocessed Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmospheres (PATMOS) multichannel radiometric data. Two satellite bias correction methods are employed: the first being an aerosol correction, the second being an in situ correction of satellite biases. The aerosol bias correction is derived from observed statistical relationships between the slant-path aerosol optical depth and AVHRR multichannel SST (MCSST) depressions for elevated levels of tropospheric and stratospheric aerosol. Weekly analyses of SST are produced on a 1° equal-angle grid using optimum interpolation (OI) methodology. Four separate OI analyses are derived based on 1) MCSST without satellite bias correction, 2) MCSST with aerosol satellite bias correction, 3) MCSST with in situ correction of satellite biases, and 4) MCSST with both aerosol and in situ corrections of satellite biases. These analyses are compared against the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager OI SST, along with the extended reconstruction SST in situ analysis product. The OI analysis 1 exhibits significant negative and positive biases. Analysis 2, derived exclusively from satellite data, reduces globally the negative bias associated with elevated atmospheric aerosol, and subsequently reveals pronounced variations in diurnal warming consistent with recently published works. Analyses 3 and 4, derived from in situ correction of satellite biases, alleviate biases (positive and negative) associated with both aerosol and diurnal warming, and also reduce the dispersion. The PATMOS OISST 1985–2000 daytime climate analyses presented here provide a high-resolution (1° weekly) empirical database for studying seasonal and interannual climate processes.

* Current affiliation: QSS Group, Inc., Lanham, Maryland

Corresponding author address: Dr. Nicholas R. Nalli, NOAA/NESDIS E/RA1, 5211 Auth Rd., Camp Springs, MD 20746-4304. Email: Nick.Nalli@noaa.gov

Abstract

This paper describes daytime sea surface temperature (SST) climate analyses derived from 16 years (1985–2000) of reprocessed Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmospheres (PATMOS) multichannel radiometric data. Two satellite bias correction methods are employed: the first being an aerosol correction, the second being an in situ correction of satellite biases. The aerosol bias correction is derived from observed statistical relationships between the slant-path aerosol optical depth and AVHRR multichannel SST (MCSST) depressions for elevated levels of tropospheric and stratospheric aerosol. Weekly analyses of SST are produced on a 1° equal-angle grid using optimum interpolation (OI) methodology. Four separate OI analyses are derived based on 1) MCSST without satellite bias correction, 2) MCSST with aerosol satellite bias correction, 3) MCSST with in situ correction of satellite biases, and 4) MCSST with both aerosol and in situ corrections of satellite biases. These analyses are compared against the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager OI SST, along with the extended reconstruction SST in situ analysis product. The OI analysis 1 exhibits significant negative and positive biases. Analysis 2, derived exclusively from satellite data, reduces globally the negative bias associated with elevated atmospheric aerosol, and subsequently reveals pronounced variations in diurnal warming consistent with recently published works. Analyses 3 and 4, derived from in situ correction of satellite biases, alleviate biases (positive and negative) associated with both aerosol and diurnal warming, and also reduce the dispersion. The PATMOS OISST 1985–2000 daytime climate analyses presented here provide a high-resolution (1° weekly) empirical database for studying seasonal and interannual climate processes.

* Current affiliation: QSS Group, Inc., Lanham, Maryland

Corresponding author address: Dr. Nicholas R. Nalli, NOAA/NESDIS E/RA1, 5211 Auth Rd., Camp Springs, MD 20746-4304. Email: Nick.Nalli@noaa.gov

Save
  • Allen, M. R., C. T. Mutlow, G. M. C. Blumberg, J. R. Christy, R. T. McNider, and D. T. Llewellyn-Jones, 1994: Global change detection. Nature, 370 , 2425.

    • Search Google Scholar
    • Export Citation
  • Armstrong, E. M., and J. Vazquez-Cuervo, 2001: A new global satellite-based sea surface temperature climatology. Geophys. Res. Lett., 28 , 41994202.

    • Search Google Scholar
    • Export Citation
  • Diaz, J. P., M. Arbelo, F. J. Expósito, G. Podestá, J. M. Prospero, and R. Evans, 2001: Relationship between errors in AVHRR-derived sea surface temperature and the TOMS Aerosol Index. Geophys. Res. Lett., 28 , 19891992.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., P. J. Minnett, C. Gentemann, T. J. Nightingale, I. J. Barton, B. Ward, and M. J. Murray, 2002: Toward improved validation of satellite sea surface temperature measurements for climate research. J. Climate, 15 , 353369.

    • Search Google Scholar
    • Export Citation
  • Gandin, L. S., 1963: Objective Analysis of Meteorological Fields. Gidrometeorirzdar, 238 pp. (Translated from Russian by Israeli Program for Scientific Translations in 1965.).

    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., C. J. Donlon, A. Stuart-Menteth, and F. J. Wentz, 2003: Diurnal signals in satellite sea surface temperature measurements. Geophys. Res. Lett., 30 .1140, doi:10.1029/2002GL016291.

    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., F. J. Wentz, C. A. Mears, and D. K. Smith, 2004: In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures. J. Geophys. Res., 109 .C04021, doi:10.1029/2003JC002092.

    • Search Google Scholar
    • Export Citation
  • Griggs, M., 1985: A method to correct satellite measurements of sea surface temperature for the effects of atmospheric aerosols. J. Geophys. Res., 90 , 1295112959.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., M. D. Goldberg, D. Tarpley, A. Jelenak, and M. J. Pavolonis, 2005: A new AVHRR cloud climatology. Proc. SPIE, 5658 , 197205. doi:10.1117/12.579047.

    • Search Google Scholar
    • Export Citation
  • Ignatov, A., and N. R. Nalli, 2002: Aerosol retrievals from the multiyear multisatellite AVHRR Pathfinder Atmosphere (PATMOS) dataset for correcting remotely sensed sea surface temperatures. J. Atmos. Oceanic Technol., 19 , 19862008.

    • Search Google Scholar
    • Export Citation
  • Jacobowitz, H., L. L. Stowe, G. Ohring, A. Heidinger, K. Knapp, and N. R. Nalli, 2003: The Advanced Very High Resolution Radiometer Pathfinder Atmosphere (PATMOS) climate dataset: A resource for climate research. Bull. Amer. Meteor. Soc., 84 , 785793.

    • Search Google Scholar
    • Export Citation
  • Kilpatrick, K. A., G. P. Podestá, and R. Evans, 2001: Overview of the NOAA/NASA Advanced Very High Resolution Radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res., 106 , 91799197.

    • Search Google Scholar
    • Export Citation
  • May, D. A., L. L. Stowe, J. D. Hawkins, and E. P. McClain, 1992: A correction for Saharan dust effects on satellite sea surface temperature measurements. J. Geophys. Res., 97 , 36113619.

    • Search Google Scholar
    • Export Citation
  • McClain, E. P., W. G. Pichel, and C. C. Walton, 1985: Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res., 90 , 1158711601.

    • Search Google Scholar
    • Export Citation
  • McMillin, L. M., 1975: Estimation of sea surface temperatures from two infrared window measurements with different absorption. J. Geophys. Res., 80 , 51135117.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 2004: Evolution of the 2002/03 El Niño. Bull. Amer. Meteor. Soc., 85 , 677695.

  • Merchant, C. J., A. R. Harris, M. J. Murray, and A. M. Závody, 1999: Toward the elimination of bias in satellite retrievals of sea surface temperature, 1, Theory, modeling and interalgorithm comparison. J. Geophys. Res., 104 , 2356523578.

    • Search Google Scholar
    • Export Citation
  • Nalli, N. R., 2003: Aerosol corrected sea surface temperature climatology (1985–2000) derived from the AVHRR Pathfinder Atmospheres (PATMOS) dataset. Proc. 2003 EUMETSAT Meteorological Satellite Conf., Darmstadt, Germany, EUMETSAT EUM P 39, 520–525.

  • Nalli, N. R., 2004: Satellite remote sensing and the NOAA/NESDIS sea-surface temperature science team. Backscatter, 15 , 2428.

  • Nalli, N. R., and L. L. Stowe, 2002: Aerosol correction for remotely sensed sea surface temperatures from the National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer. J. Geophys. Res., 107 .3172, doi:10.1029/2001JC001162.

    • Search Google Scholar
    • Export Citation
  • Rao, C. R. N., 1992: Aerosol radiative corrections to the retrieval of sea surface temperatures from infrared radiances measured by the Advanced Very High Resolution Radiometer (AVHRR). Int. J. Remote Sens., 13 , 17571769.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., 1988: A real-time global sea surface temperature analysis. J. Climate, 1 , 7576.

  • Reynolds, R. W., 1993: Impact of Mount Pinatubo aerosols on satellite-derived sea surface temperatures. J. Climate, 6 , 768774.

  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., C. L. Gentemann, and F. Wentz, 2004: Impact of TRMM SSTs on a climate-scale SST analysis. J. Climate, 17 , 29382952.

  • Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J. Climate, 16 , 14951510.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17 , 24662477.

  • Stowe, L. L., A. M. Ignatov, and R. R. Singh, 1997: Development, validation, and potential enhancements to the second-generation operational aerosol product at the National Environmental Satellite, Data and Information Service of the National Oceanic and Atmospheric Administration. J. Geophys. Res., 102 , 1692316934.

    • Search Google Scholar
    • Export Citation
  • Stowe, L. L., P. A. Davis, and E. P. McClain, 1999: Scientific basis and initial evaluation of the CLAVR-1 global clear/cloud classification algorithm for the Advanced Very High Resolution Radiometer. J. Atmos. Oceanic Technol., 16 , 656681.

    • Search Google Scholar
    • Export Citation
  • Stowe, L. L., H. Jacobowitz, G. Ohring, K. Knapp, and N. R. Nalli, 2002: The Advanced Very High Resolution Radiometer Pathfinder Atmosphere (PATMOS) climate dataset: Initial analyses and evaluations. J. Climate, 15 , 12431260.

    • Search Google Scholar
    • Export Citation
  • Stuart-Menteth, A. C., I. S. Robinson, and P. G. Challenor, 2003: A global study of diurnal warming using satellite-derived sea surface temperature. J. Geophys. Res., 108 .3155, doi:10.1029/2002JC001534.

    • Search Google Scholar
    • Export Citation
  • Tanahashi, S., H. Kawamura, T. Takahashi, and H. Yusa, 2003: Diurnal variations of sea surface temperature over the wide-ranging ocean using VISSR on board GMS. J. Geophys. Res., 108 .3216, doi:10.1029/2002JC001313.

    • Search Google Scholar
    • Export Citation
  • Thiébaux, H. J., and M. A. Pedder, 1987: Spatial Objective Analysis: With Applications in Atmospheric Science. Academic Press, 299 pp.

  • Vázquez-Cuervo, J., E. M. Armstrong, and A. Harris, 2004: The effect of aerosols and clouds on the retrieval of infrared sea surface temperatures. J. Climate, 17 , 39213933.

    • Search Google Scholar
    • Export Citation
  • Walton, C. C., 1985: Satellite measurement of sea surface temperature in the presence of volcanic aerosols. J. Climate Appl. Meteor., 24 , 501507.

    • Search Google Scholar
    • Export Citation
  • Walton, C. C., W. G. Pichel, J. F. Sapper, and D. A. May, 1998: The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA Polar-Orbiting Environmental Satellites. J. Geophys. Res., 103 , 2799928012.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288 , 847850.

    • Search Google Scholar
    • Export Citation
  • Xu, L., and W. L. Smith, 1986: Numerical simulation of the influence of volcanic aerosols on VAS-derived SST determinations. Appl. Opt., 25 , 11371144.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 568 376 83
PDF Downloads 132 44 1