GFDL's CM2 Global Coupled Climate Models. Part II: The Baseline Ocean Simulation

Anand Gnanadesikan NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Anand Gnanadesikan in
Current site
Google Scholar
PubMed
Close
,
Keith W. Dixon NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Keith W. Dixon in
Current site
Google Scholar
PubMed
Close
,
Stephen M. Griffies NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Stephen M. Griffies in
Current site
Google Scholar
PubMed
Close
,
V. Balaji Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by V. Balaji in
Current site
Google Scholar
PubMed
Close
,
Marcelo Barreiro Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Marcelo Barreiro in
Current site
Google Scholar
PubMed
Close
,
J. Anthony Beesley UCAR Visiting Scientist Program, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by J. Anthony Beesley in
Current site
Google Scholar
PubMed
Close
,
William F. Cooke RS Information Systems, Inc., McLean, Virginia

Search for other papers by William F. Cooke in
Current site
Google Scholar
PubMed
Close
,
Thomas L. Delworth NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Thomas L. Delworth in
Current site
Google Scholar
PubMed
Close
,
Rudiger Gerdes Alfred Wegener Insitute for Polar and Marine Research, Bremerhaven, Germany

Search for other papers by Rudiger Gerdes in
Current site
Google Scholar
PubMed
Close
,
Matthew J. Harrison NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Matthew J. Harrison in
Current site
Google Scholar
PubMed
Close
,
Isaac M. Held NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Isaac M. Held in
Current site
Google Scholar
PubMed
Close
,
William J. Hurlin NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by William J. Hurlin in
Current site
Google Scholar
PubMed
Close
,
Hyun-Chul Lee RS Information Systems, Inc., McLean, Virginia

Search for other papers by Hyun-Chul Lee in
Current site
Google Scholar
PubMed
Close
,
Zhi Liang RS Information Systems, Inc., McLean, Virginia

Search for other papers by Zhi Liang in
Current site
Google Scholar
PubMed
Close
,
Giang Nong RS Information Systems, Inc., McLean, Virginia

Search for other papers by Giang Nong in
Current site
Google Scholar
PubMed
Close
,
Ronald C. Pacanowski NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Ronald C. Pacanowski in
Current site
Google Scholar
PubMed
Close
,
Anthony Rosati NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Anthony Rosati in
Current site
Google Scholar
PubMed
Close
,
Joellen Russell Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Joellen Russell in
Current site
Google Scholar
PubMed
Close
,
Bonita L. Samuels NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Bonita L. Samuels in
Current site
Google Scholar
PubMed
Close
,
Qian Song Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Qian Song in
Current site
Google Scholar
PubMed
Close
,
Michael J. Spelman NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Michael J. Spelman in
Current site
Google Scholar
PubMed
Close
,
Ronald J. Stouffer NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Ronald J. Stouffer in
Current site
Google Scholar
PubMed
Close
,
Colm O. Sweeney Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Colm O. Sweeney in
Current site
Google Scholar
PubMed
Close
,
Gabriel Vecchi UCAR Visiting Scientist Program, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Gabriel Vecchi in
Current site
Google Scholar
PubMed
Close
,
Michael Winton NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Michael Winton in
Current site
Google Scholar
PubMed
Close
,
Andrew T. Wittenberg NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Andrew T. Wittenberg in
Current site
Google Scholar
PubMed
Close
,
Fanrong Zeng RS Information Systems, Inc., McLean, Virginia

Search for other papers by Fanrong Zeng in
Current site
Google Scholar
PubMed
Close
,
Rong Zhang Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Rong Zhang in
Current site
Google Scholar
PubMed
Close
, and
John P. Dunne NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by John P. Dunne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The current generation of coupled climate models run at the Geophysical Fluid Dynamics Laboratory (GFDL) as part of the Climate Change Science Program contains ocean components that differ in almost every respect from those contained in previous generations of GFDL climate models. This paper summarizes the new physical features of the models and examines the simulations that they produce. Of the two new coupled climate model versions 2.1 (CM2.1) and 2.0 (CM2.0), the CM2.1 model represents a major improvement over CM2.0 in most of the major oceanic features examined, with strikingly lower drifts in hydrographic fields such as temperature and salinity, more realistic ventilation of the deep ocean, and currents that are closer to their observed values. Regional analysis of the differences between the models highlights the importance of wind stress in determining the circulation, particularly in the Southern Ocean. At present, major errors in both models are associated with Northern Hemisphere Mode Waters and outflows from overflows, particularly the Mediterranean Sea and Red Sea.

** Current affiliation: NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Corresponding author address: Dr. Anand Gnanadesikan, NOAA/Geophysical Fluid Dynamics Laboratory, P.O. Box 308, Forrestal Campus, Princeton, NJ 08542. Email: Anand.Gnanadesikan@noaa.gov

Abstract

The current generation of coupled climate models run at the Geophysical Fluid Dynamics Laboratory (GFDL) as part of the Climate Change Science Program contains ocean components that differ in almost every respect from those contained in previous generations of GFDL climate models. This paper summarizes the new physical features of the models and examines the simulations that they produce. Of the two new coupled climate model versions 2.1 (CM2.1) and 2.0 (CM2.0), the CM2.1 model represents a major improvement over CM2.0 in most of the major oceanic features examined, with strikingly lower drifts in hydrographic fields such as temperature and salinity, more realistic ventilation of the deep ocean, and currents that are closer to their observed values. Regional analysis of the differences between the models highlights the importance of wind stress in determining the circulation, particularly in the Southern Ocean. At present, major errors in both models are associated with Northern Hemisphere Mode Waters and outflows from overflows, particularly the Mediterranean Sea and Red Sea.

** Current affiliation: NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Corresponding author address: Dr. Anand Gnanadesikan, NOAA/Geophysical Fluid Dynamics Laboratory, P.O. Box 308, Forrestal Campus, Princeton, NJ 08542. Email: Anand.Gnanadesikan@noaa.gov

Save
  • Adcroft, A., C. Hill, and J. Marshall, 1997: Representation of topography by shaved cells in a height coordinate ocean model. Mon. Wea. Rev, 125 , 22932315.

    • Search Google Scholar
    • Export Citation
  • Barry, R. G., M. C. Serreze, J. A. Maslanik, and R. H. Preller, 1993: The Arctic sea ice-climate system: Observations and modeling. Rev. Geophys, 31 , 397422.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., and R. Döscher, 1997: A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Oceanogr, 27 , 581591.

    • Search Google Scholar
    • Export Citation
  • Bocaletti, G., R. Ferrari, A. Adcroft, D. Ferreira, and J. Marshall, 2005: The vertical structure of ocean heat transport. Geophys. Res. Lett, 32 .L10603, doi:10.1029/2005GL022474.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., C. Stephens, J. I. Antonov, M. E. Conkright, R. A. Locarnini, T. D. O'Brien, and H. E. Garcia, 2002: Salinity. Vol. 2, World Ocean Atlas 2001, NOAA Atlas NESDIS 50, 165 pp.

  • Bryan, K., and L. J. Lewis, 1979: A water mass model of the world ocean. J. Geophys. Res, 84 , 25032517.

  • Colony, R. L., and A. S. Thorndike, 1984: An estimate of the mean field of Arctic sea ice motion. J. Geophys. Res, 89 , 623629.

  • Cunningham, S. A., S. G. Alderson, B. A. King, and M. A. Brandon, 2003: Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res, 108 .8084, doi:10.1029/2001JC001147.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., R. J. Stouffer, K. W. Dixon, M. J. Spelman, T. R. Knutson, A. J. Broccoli, P. J. Kushner, and R. T. Wetherald, 2002: Review of simulations of climate variability and change with the GFDL R30 coupled climate model. Climate Dyn, 19 , 555574.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL's CM2 coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • Doney, S. C., W. G. Large, and F. O. Bryan, 1998: Surface ocean fluxes and water-mass transformation rates in the coupled NCAR Climate System Model. J. Climate, 11 , 14201441.

    • Search Google Scholar
    • Export Citation
  • Doney, S. C., and Coauthors, 2004: Evaluating global ocean carbon models: The importance of realistic physics. Global Biogeochem. Cycles, 18 .GB3017, doi:10.1029/2003GB002150.

    • Search Google Scholar
    • Export Citation
  • Freeland, J., 2001: Observations of the flow of abyssal water through the Samoa Passage. J. Phys. Oceanogr, 31 , 22732279.

  • Gent, P., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr, 20 , 150155.

  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283 , 20772079.

  • Gnanadesikan, A., R. D. Slater, N. Gruber, and J. L. Sarmiento, 2002: Oceanic vertical exchange and new production: A model-data comparison. Deep-Sea Res, 43B , 363401.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., R. D. Slater, P. S. Swathi, and G. K. Vallis, 2005: The energetics of ocean heat transport. J. Climate, 18 , 26042616.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., R. D. Susanto, and K. Vranes, 2003: Cool Indonesian throughflow as a consequence of restricted surface layer flow. Nature, 425 , 824828.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys. Oceanogr, 28 , 831841.

  • Griffies, S. M., A. Gnanadesikan, R. C. Pacanowski, V. D. Larichev, J. K. Dukowicz, and R. D. Smith, 1998: Isopycnal mixing in a z-coordinate ocean model. J. Phys. Oceanogr, 28 , 805830.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., R. C. Pacanowski, and R. W. Hallberg, 2000: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Wea. Rev, 128 , 538564.

    • Search Google Scholar
    • Export Citation
  • Grimes, S. M., R. C. Pacanowski, R. M. Schmidt, and V. Balaji, 2001: Tracer conservation with an explicit free surface method for z-coordinate ocean models. Mon. Wea. Rev, 129 , 10811098.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2003: A technical guide to MOM 4. GFDL Ocean Group Tech. Rep. 5, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, 295 pp.

  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci, 1 , 4579.

  • Guilyardi, E., G. Madec, and L. Terray, 2001: The role of lateral ocean physics in the upper ocean thermal balance of a coupled ocean-atmosphere GCM. Climate Dyn, 17 , 589599.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., and J. Pedlosky, 2000: Climate variability induced by anomalous buoyancy forcing in a multilayer model of the ventilated thermocline. J. Phys. Oceanogr, 30 , 30093021.

    • Search Google Scholar
    • Export Citation
  • Hundsdorfer, W., and R. Trompert, 1994: Method of lines and direct discretization: A comparison for linear advection. Appl. Numer. Math, 13 , 469490.

    • Search Google Scholar
    • Export Citation
  • Johns, T., and Coauthors, 2005: HadGEM1—Model description and analysis of preliminary experiments for the IPCC Fourth Assessment Report. Hadley Centre Tech. Rep. 55, Met Office, Exeter, United Kingdom, 73 pp. [Available online at http://www.metoffice.gov.uk/research/hadleycentre/pubs/HCTN/index.html.].

  • Johnson, G. C., D. L. Rudnick, and B. A. Taft, 1994: Bottom water variability in the Samoa Passage. Deep-Sea Res, 52 , 177196.

  • Large, W., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary mixing parameterization. Rev. Geophys, 32 , 363403.

    • Search Google Scholar
    • Export Citation
  • Large, W., G. Danasbogulu, J. C. McWilliams, P. R. Gent, and F. O. Bryan, 2001: Equatorial circulation of a global ocean climate model with anisotropic viscosity. J. Phys. Oceanogr, 31 , 518536.

    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., R. L. Molinari, and P. S. Vertes, 1987: Structure and variability of the Florida Current at 27°N: April 1982–July 1984. J. Phys. Oceanogr, 17 , 565583.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364 , 701703.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1998: Mixing of a tracer in the pycnocline. J. Geophys. Res, 103 , 2149921530.

  • Lee, H. C., A. Rosati, and M. J. Spelman, 2006: Barotropic tidal mixing effects in a coupled climate model: Oceanic conditions in the North Atlantic. Ocean Modell, 11 , 464477.

    • Search Google Scholar
    • Export Citation
  • Lee, T. N., W. E. Johns, C. T. Liu, D. Zhand, R. Zantopp, and Y. Yang, 2001: Mean transport and seasonal cycle of the Kuroshio east of Taiwan with comparison to the Florida Current. J. Geophys. Res, 106 , 2214322158.

    • Search Google Scholar
    • Export Citation
  • Levine, M. D., C. A. Paulson, and J. H. Morison, 1985: Internal waves in the Arctic Ocean: Comparison with lower-latitude observations. J. Phys. Oceanogr, 15 , 800809.

    • Search Google Scholar
    • Export Citation
  • Lukas, R., and E. Firing, 1984: The geostrophic balance of the Pacific equatorial undercurrent. Deep-Sea Res, 31 , 6166.

  • Luyten, J. R., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr, 13 , 292309.

  • Manabe, S., and K. Bryan, 1969: Climate calculations with a combined ocean-atmosphere model. J. Atmos. Sci, 26 , 786789.

  • Manabe, S., R. Stouffer, M. Spelman, and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmosphere CO2. Part I: Annual mean response. J. Climate, 4 , 785818.

    • Search Google Scholar
    • Export Citation
  • Marinov, I., 2004: Controls on the air-sea balance of CO2. Ph.D. dissertation, Princeton University, 224 pp.

  • Matsumoto, K., and Coauthors, 2004: Evaluation of ocean carbon cycle models with data-based metrics. Geophys. Res. Lett, 31 .L07303, doi:10.1029/2003GL018970.

    • Search Google Scholar
    • Export Citation
  • Morel, A., and D. Antoine, 1994: Heating rate within the upper ocean in relation to its bio-optical state. J. Phys. Oceanogr, 24 , 16521665.

    • Search Google Scholar
    • Export Citation
  • Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Phys, 126 , 251273.

  • Orsi, A. H., T. Whitworth, and W. D. Nowlin, 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res, 42A , 641673.

    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., E. P. Chassignet, and C. G. H. Rooth, 2001: On the connection between the Mediterranean outflow and the Azores Current. J. Phys. Oceanogr, 31 , 461480.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and A. Gnanadesikan, 1998: Transient response in a Z-level ocean model that resolves topography with partial cells. Mon. Wea. Rev, 126 , 32483270.

    • Search Google Scholar
    • Export Citation
  • Park, Y-G., and K. Bryan, 2000: Comparison of thermally driven circulations from a depth-coordinate model and an isopycnal-layer model. Part I: Scaling-law sensitivity to vertical diffusivity. J. Phys. Oceanogr, 30 , 590605.

    • Search Google Scholar
    • Export Citation
  • Peters, H., M. C. Gregg, and J. M. Toole, 1988: On the parameterization of equatorial turbulence. J. Geophys. Res, 93 , C2. 11991218.

  • Polzin, K., 1999: A rough recipe for the energy balance of quasi-steady lee waves. Dynamics of Internal Gravity Waves II: Proc. ‘Aha Huliko’a Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 117–128.

  • Polzin, K., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276 , 9396.

    • Search Google Scholar
    • Export Citation
  • Rhein, M., L. Stramma, and U. Send, 1995: The Atlantic Deep Western Boundary Current: Water masses and transports near the equator. J. Geophys. Res, 100 , 24412457.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Young, 1982: Potential vorticity homogenization in planetary gyres. J. Fluid Mech, 122 , 347367.

  • Ridgway, K. R., and J. R. Dunn, 2003: Mesoscale structure of the mean East Australian Current System and its relationship with topography. Progress in Oceanography, Vol. 56, Pergamon, 189–222.

  • Roach, A. T., K. Aagard, C. H. Pease, S. A. Salo, T. Weingartner, V. Pavlov, and M. Kulakov, 1995: Direct measurements of transport and water properties through Bering Strait. J. Geophys. Res, 100 , 1844318457.

    • Search Google Scholar
    • Export Citation
  • Rothrock, D. A., J. Zhang, and Y. Yu, 2003: The arctic ice thickness anomaly of the 1990s: A consistent view from models and observations. J. Geophys. Res, 108 .3083, doi:10.1029/2001JC001208.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., E. P. Jones, L. G. Anderson, and G. Kattner, 1994: On the intermediate depth waters of the Arctic Ocean. The Polar Oceans and Their Role in Shaping the Global Environment, Geophys. Monogr., No. 85, Amer. Geophys. Union, 33–46.

  • Sarmiento, J. L., T. M. C. Hughes, R. J. Stouffer, and S. Manabe, 1998: Ocean carbon cycle response to future greenhouse warming. Nature, 393 , 245249.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell, 6 , 245263.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., G. C. Johnson, and W. S. Kessler, 2003: The Pacific Cold Tongue: A pathway for interhemispheric exchange. J. Phys. Oceanogr, 33 , 10271043.

    • Search Google Scholar
    • Export Citation
  • Speer, K. G., S. R. Rintoul, and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr, 30 , 32123222.

  • Stephens, C., J. I. Antonov, T. P. Boyer, M. E. Conkright, R. A. Locarnini, T. D. O'Brien, and H. E. Garcia, 2002: Temperature. Vol. 1, World Ocean Atlas 2001, NOAA Atlas NESDIS 49, 167 pp.

  • Stouffer, R. J., 2004: Time scales of climate response. J. Climate, 17 , 209217.

  • Stouffer, R. J., and Coauthors, 2006: GFDL's CM2 coupled climate models. Part IV: Idealized climate response. J. Climate, 19 , 723740.

    • Search Google Scholar
    • Export Citation
  • Sweby, P., 1984: High-resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal, 21 , 9951011.

  • Sweeney, C., A. Gnanadesikan, S. M. Griffies, M. Harrison, A. Rosati, and B. Samuels, 2005: Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J. Phys. Oceanogr, 35 , 11031119.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16 , 32133226.

    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., D. P. Chambers, C. K. Shum, R. J. Eanes, J. C. Ries, and R. H. Stewart, 1994: Accuracy assessment of the large-scale dynamic ocean topography from TOPEX/Poseidon altimetry. J. Geophys. Res, 99 , C12. 2460524617.

    • Search Google Scholar
    • Export Citation
  • Tilburg, C. E., H. E. Hurlburt, J. J. O'Brien, and J. F. Shriver, 2001: The dynamics of the East Australia Current system: The Tasman Front, the East Auckland Current, and the East Cape Current. J. Phys. Oceanogr, 31 , 29172943.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., and B. Samuels, 1998: On the ocean's large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr, 28 , 18321852.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., R. Murnane, S. Carson, A. Gnanadesikan, and J. L. Sarmiento, 2003: Representation of the carbon cycle in box models and GCMs: 2. Organic pump. Global Biogeochem. Cycles, 17 .1027, doi:10.1029/2001GB001841.

    • Search Google Scholar
    • Export Citation
  • Willey, D. A., R. A. Fine, R. E. Sonnerup, J. L. Bullister, W. M. Smethie, and M. J. Warner, 2004: Global oceanic chloroflourocarbon inventory. Geophys. Res. Lett, 31 .L01303, doi:10.1029/2003GL018816.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2003: On the climatic impact of ocean circulation. J. Climate, 16 , 28752889.

  • Winton, M., R. W. Hallberg, and A. Gnanadesikan, 1998: Simulation of density-driven frictional downslope flow in Z-coordinate ocean models. J. Phys. Oceanogr, 28 , 21632174.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A., and Coauthors, 2006: GFDL's CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19 , 698722.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2729 979 44
PDF Downloads 566 173 12