The Annular Response to Tropical Pacific SST Forcing

Shuanglin Li NOAA–CIRES Climate Diagnostics Center, University of Colorado, Boulder, Colorado

Search for other papers by Shuanglin Li in
Current site
Google Scholar
PubMed
Close
,
Martin P. Hoerling NOAA–CIRES Climate Diagnostics Center, University of Colorado, Boulder, Colorado

Search for other papers by Martin P. Hoerling in
Current site
Google Scholar
PubMed
Close
,
Shiling Peng NOAA–CIRES Climate Diagnostics Center, University of Colorado, Boulder, Colorado

Search for other papers by Shiling Peng in
Current site
Google Scholar
PubMed
Close
, and
Klaus M. Weickmann NOAA–CIRES Climate Diagnostics Center, University of Colorado, Boulder, Colorado

Search for other papers by Klaus M. Weickmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The leading pattern of Northern Hemisphere winter height variability exhibits an annular structure, one related to tropical west Pacific heating. To explore whether this pattern can be excited by tropical Pacific SST variations, an atmospheric general circulation model coupled to a slab mixed layer ocean is employed. Ensemble experiments with an idealized SST anomaly centered at different longitudes on the equator are conducted. The results reveal two different response patterns—a hemispheric pattern projecting on the annular mode and a meridionally arched pattern confined to the Pacific–North American sector, induced by the SST anomaly in the west and the east Pacific, respectively. Extratropical air–sea coupling enhances the annular component of response to the tropical west Pacific SST anomalies.

A diagnosis based on linear dynamical models suggests that the two responses are primarily maintained by transient eddy forcing. In both cases, the model transient eddy forcing response has a maximum near the exit of the Pacific jet, but with a different meridional position relative to the upper-level jet. The emergence of an annular response is found to be very sensitive to whether transient eddy forcing anomalies occur within the axis of the jet core. For forcing within the jet core, energy propagates poleward and downstream, inducing an annular response. For forcing away from the jet core, energy propagates equatorward and downstream, inducing a trapped regional response. The selection of an annular versus a regionally confined tropospheric response is thus postulated to depend on how the storm tracks respond. Tropical west Pacific SST forcing is particularly effective in exciting the required storm-track response from which a hemisphere-wide teleconnection structure emerges.

Corresponding author address: Shuanglin Li, NOAA–CIRES Climate Diagnostics Center, R/CDC1, 325 Broadway, Boulder, CO 80305-3328. Email: shuanglin.li@noaa.gov

Abstract

The leading pattern of Northern Hemisphere winter height variability exhibits an annular structure, one related to tropical west Pacific heating. To explore whether this pattern can be excited by tropical Pacific SST variations, an atmospheric general circulation model coupled to a slab mixed layer ocean is employed. Ensemble experiments with an idealized SST anomaly centered at different longitudes on the equator are conducted. The results reveal two different response patterns—a hemispheric pattern projecting on the annular mode and a meridionally arched pattern confined to the Pacific–North American sector, induced by the SST anomaly in the west and the east Pacific, respectively. Extratropical air–sea coupling enhances the annular component of response to the tropical west Pacific SST anomalies.

A diagnosis based on linear dynamical models suggests that the two responses are primarily maintained by transient eddy forcing. In both cases, the model transient eddy forcing response has a maximum near the exit of the Pacific jet, but with a different meridional position relative to the upper-level jet. The emergence of an annular response is found to be very sensitive to whether transient eddy forcing anomalies occur within the axis of the jet core. For forcing within the jet core, energy propagates poleward and downstream, inducing an annular response. For forcing away from the jet core, energy propagates equatorward and downstream, inducing a trapped regional response. The selection of an annular versus a regionally confined tropospheric response is thus postulated to depend on how the storm tracks respond. Tropical west Pacific SST forcing is particularly effective in exciting the required storm-track response from which a hemisphere-wide teleconnection structure emerges.

Corresponding author address: Shuanglin Li, NOAA–CIRES Climate Diagnostics Center, R/CDC1, 325 Broadway, Boulder, CO 80305-3328. Email: shuanglin.li@noaa.gov

Save
  • Ambaum, M. H. P., B. J. Hoskins, and D. B. Stephenson, 2001: Arctic Oscillation or North Atlantic Oscillation? J. Climate, 14 , 34953507.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and P. Sardeshmukh, 2002: Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J. Climate, 15 , 34273442.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1992: The maintenance of low-frequency atmospheric anomalies. J. Atmos. Sci., 49 , 19241945.

  • Branstator, G., 2002: Circumglobal teleconnections, the jetstream waveguide, and the North Atlantic Oscillation. J. Climate, 15 , 18931910.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., and L. Terray, 2001: Oceanic forcing of the wintertime low-frequency atmospheric variability in the North Atlantic European sector: A study with the ARPEGE model. J. Climate, 14 , 42664291.

    • Search Google Scholar
    • Export Citation
  • Deser, C., 2000: On the teleconnection activity of the “Arctic Oscillation.”. Geophys. Res. Lett., 27 , 779782.

  • Hall, N. M. J., J. Derome, and H. Lin, 2001: The extratropical signal generated by a midlatitude SST anomaly. Part I: Sensitivity at equilibrium. J. Climate, 14 , 20352053.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and A. Kumar, 2002: Atmospheric response patterns associated with tropical forcing. J. Climate, 15 , 21842203.

  • Hoerling, M. P., J. W. Hurrell, T. Xu, G. T. Bates, and A. S. Phillips, 2004: Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming. Climate Dyn., 23 , 391405.

    • Search Google Scholar
    • Export Citation
  • Honda, M., H. Nakamura, J. Ukata, I. Kousaka, and K. Takeuchi, 2001: Interannual seesaw between the Aleutian and Icelandic Lows. Part I: Seasonal dependence and life cycle. J. Climate, 14 , 10291042.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50 , 16611671.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Lau, N-C., and M. J. Nath, 1991: Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks. J. Atmos. Sci., 48 , 25892613.

    • Search Google Scholar
    • Export Citation
  • Li, S., 2004: Impact of Northwest Atlantic SST anomalies on the circulation over the Ural Mountains during early winter. J. Meteor. Soc. Japan, 82 , 971988.

    • Search Google Scholar
    • Export Citation
  • Mathieu, P-P., R. T. Sutton, B. Tong, and M. Collins, 2004: Predictability of winter climate over the North Atlantic European region during ENSO events. J. Climate, 17 , 19531974.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. E. Livezey, 1986: Tropical–extratropical geopotential height teleconnections during the Northern Hemisphere winter. Mon. Wea. Rev., 114 , 24882515.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., and D. Anderson, 1994: The prospects for seasonal forecasting—A review paper. Quart. J. Roy. Meteor. Soc., 120 , 755793.

    • Search Google Scholar
    • Export Citation
  • Peng, S., and J. S. Whitaker, 1999: Mechanism determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12 , 13931408.

    • Search Google Scholar
    • Export Citation
  • Peng, S., and W. A. Robinson, 2001: Relationships between atmospheric internal variability and the responses to an extratropical SST anomaly. J. Climate, 14 , 29432959.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2002: North Atlantic SST forcing of the NAO and relationships with intrinsic hemispheric variability. Geophys. Res. Lett., 29 .1276, doi:10.1029/2001GL014043.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2003: Mechanisms for the linear and nonlinear NAO response to the North Atlantic SST tripole. J. Climate, 16 , 19872004.

    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, S. Li, and M. P. Hoerling, 2005: Tropical Atlantic SST forcing of coupled North Atlantic seasonal responses. J. Climate, 18 , 480496.

    • Search Google Scholar
    • Export Citation
  • Pozo-Vasquez, D., M. Esteban-Parra, F. Rodrigo, and Y. Castro-Diez, 2001: The association between ENSO and winter atmospheric circulation and temperature in the North Atlantic region. J. Climate, 14 , 34083420.

    • Search Google Scholar
    • Export Citation
  • Pozo-Vasquez, D., S. R. Gamiz-Fortis, J. Tovar-Pescador, M. Esteban-Parra, and Y. Castro-Diez, 2005: North Atlantic winter SLP anomalies based on the autumn ENSO state. J. Climate, 18 , 97103.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110 , 353384.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., E. B. Horton, D. E. Parker, C. K. Folland, and R. B. Hackett, 1996: Version 2.2 of the global sea surface temperature data set, 1903–1994. Climate Research Tech. Note 74, Hadley Centre for Climate Prediction and Research, Met Office, 35 pp.

  • Rodwell, M. J., D. P. Rowell, and C. K. Folland, 1999: Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature, 398 , 320323.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1997: North Atlantic storm track variability and its association to the North Atlantic Oscillation and climate variability of northern Europe. J. Climate, 10 , 16351647.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady, idealized tropical divergence. J. Atmos. Sci., 45 , 12281251.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2003: Influence of the ocean on North Atlantic climate variability 1971–1999. J. Climate, 16 , 32963313.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., W. A. Norton, and S. P. Jewson, 2000: The North Atlantic Oscillation—What role for the ocean? Atmos. Sci. Lett., 1 .doi:10.1006/asle.2000.0021.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25 , 12971300.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annual modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13 , 10001016.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and P. D. Sardeshmukh, 1993: Factors determining the extratropical responses to equatorial diabatic heating anomalies. J. Atmos. Sci., 50 , 907918.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and L. Yu, 1998: Steady response to tropical heating in wavy linear and nonlinear baroclinic models. J. Atmos. Sci., 55 , 35653582.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N-C. Lau, and C. Popelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103 , 1429114324.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. W. J. Thompson, 2002: The Pacific center of action of the Northern Hemisphere annular mode: Real or artifact? J. Climate, 15 , 19871991.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 480 280 3
PDF Downloads 196 48 5