Spatial Variability of Liquid Water Path in Marine Low Cloud: The Importance of Mesoscale Cellular Convection

Robert Wood University of Washington, Seattle, Washington

Search for other papers by Robert Wood in
Current site
Google Scholar
PubMed
Close
and
Dennis L. Hartmann University of Washington, Seattle, Washington

Search for other papers by Dennis L. Hartmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Liquid water path (LWP) mesoscale spatial variability in marine low cloud over the eastern subtropical oceans is examined using two months of daytime retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Terra satellite. Approximately 20 000 scenes of size 256 km × 256 km are used in the analysis. It is found that cloud fraction is strongly linked with the LWP variability in the cloudy fraction of the scene. It is shown here that in most cases LWP spatial variance is dominated by horizontal scales of 10–50 km, and increases as the variance-containing scale increases, indicating the importance of organized mesoscale cellular convection (MCC). A neural network technique is used to classify MODIS scenes by the spatial variability type (no MCC, closed MCC, open MCC, cellular but disorganized). It is shown how the different types tend to occupy distinct geographical regions and different physical regimes within the subtropics, although the results suggest considerable overlap of the large-scale meteorological conditions associated with each scene type. It is demonstrated that both the frequency of occurrence, and the variance-containing horizontal scale of the MCC increases as the marine boundary layer (MBL) depth increases. However, for the deepest MBLs, the MCC tends to be replaced by clouds containing cells but lacking organization. In regions where MCC is prevalent, a lack of sensitivity of the MCC type (open or closed) to the large-scale meteorology was found, suggesting a mechanism internal to the MBL may be important in determining MCC type. The results indicate that knowledge of the physics of MCC will be required to completely understand and predict low cloud coverage and variability in the subtropics.

Corresponding author address: Dr. Robert Wood, Atmospheric Sciences, University of Washington, Seattle, WA 98195. Email: robwood@atmos.washington.edu

Abstract

Liquid water path (LWP) mesoscale spatial variability in marine low cloud over the eastern subtropical oceans is examined using two months of daytime retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Terra satellite. Approximately 20 000 scenes of size 256 km × 256 km are used in the analysis. It is found that cloud fraction is strongly linked with the LWP variability in the cloudy fraction of the scene. It is shown here that in most cases LWP spatial variance is dominated by horizontal scales of 10–50 km, and increases as the variance-containing scale increases, indicating the importance of organized mesoscale cellular convection (MCC). A neural network technique is used to classify MODIS scenes by the spatial variability type (no MCC, closed MCC, open MCC, cellular but disorganized). It is shown how the different types tend to occupy distinct geographical regions and different physical regimes within the subtropics, although the results suggest considerable overlap of the large-scale meteorological conditions associated with each scene type. It is demonstrated that both the frequency of occurrence, and the variance-containing horizontal scale of the MCC increases as the marine boundary layer (MBL) depth increases. However, for the deepest MBLs, the MCC tends to be replaced by clouds containing cells but lacking organization. In regions where MCC is prevalent, a lack of sensitivity of the MCC type (open or closed) to the large-scale meteorology was found, suggesting a mechanism internal to the MBL may be important in determining MCC type. The results indicate that knowledge of the physics of MCC will be required to completely understand and predict low cloud coverage and variability in the subtropics.

Corresponding author address: Dr. Robert Wood, Atmospheric Sciences, University of Washington, Seattle, WA 98195. Email: robwood@atmos.washington.edu

Save
  • Ackerman, S. A., and Coauthors, 2002: , Discriminating clear-sky from cloud with MODIS. MODIS Algorithm Theoretical Basis Doc. MOD35 ATBD-MOD-06, NASA, 115 pp.

  • Agee, E. M., T. S. Chen, and K. E. Dowell, 1973: A review of mesoscale cellular convection. Bull. Amer. Meteor. Soc., 54 , 10041012.

  • Atkinson, B. W., and J. W. Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34 , 403431.

  • Atkinson, P. M., and A. R. L. Tatnall, 1997: Neural networks in remote sensing. Int. J. Remote Sens., 18 , 699709.

  • Barker, H. W., 1996a: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part I: Methodology and homogeneous biases. J. Atmos. Sci., 53 , 22892303.

    • Search Google Scholar
    • Export Citation
  • Barker, H. W., 1996b: A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part II: Validation using satellite data. J. Atmos. Sci., 53 , 23042316.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J. L., and Coauthors, 2000: An overview of the ACE-2 cloudy column closure experiment. Tellus, 52B , 815827.

  • Cahalan, R. F., and J. B. Snider, 1989: Marine stratocumulus structure. Remote Sens. Environ., 28 , 95107.

  • Cahalan, R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell, and J. B. Snider, 1994: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51 , 24342455.

    • Search Google Scholar
    • Export Citation
  • Castleman, R. R., 1996: Digital Image Processing. Prentice Hall, 667 pp.

  • Clark, C., and J. Boyce, 1999: The detection of ship trail clouds by artificial neural network. Int. J. Remote Sens., 20 , 711726.

  • Comstock, K., C. S. Bretherton, and S. E. Yuter, 2005: Mesoscale variability and drizzle in southeast Pacific stratocumulus. J. Atmos. Sci., 62 , 37923807.

    • Search Google Scholar
    • Export Citation
  • Considine, G., J. A. Curry, and B. Wielicki, 1997: Modeling cloud fraction and horizontal variability in marine boundary layer clouds. J. Geophys. Res., 102 , 1351713525.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and C. Deser, 1999: Diurnal and semidiurnal variations in global surface wind and divergence fields. J. Geophys. Res., 104 , 3110931125.

    • Search Google Scholar
    • Export Citation
  • Davis, A., A. Marshak, W. Wiscombe, and R. Cahahlan, 1996: Scale invariance of liquid water distributions in marine stratocumulus. Part I: Spectral properties and stationarity issues. J. Atmos. Sci., 53 , 15381558.

    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Near global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7 , 465497.

    • Search Google Scholar
    • Export Citation
  • Jeffery, C. A., and P. H. Austin, 2003: Unified treatment of the thermodynamic and optical variability of unresolved low clouds. J. Atmos. Sci., 60 , 16211631.

    • Search Google Scholar
    • Export Citation
  • King, M. D., Y. Kaufman, W. P. Menzel, and D. Tanré, 1992: Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectroradiometer (modis). IEEE Trans. Geosci. Remote Sens., 30 , 227.

    • Search Google Scholar
    • Export Citation
  • King, M. D., S-C. Tsay, S. E. Platnick, M. Wang, and K-N. Liou, 1997: Cloud retrieval algorithms for MODIS: Optical thickness, effective particle radius, and thermodynamic phase. MODIS Algorithm Theoretical Basis Doc. ATBD-MOD-05, NASA.

  • King, M. D., W. P. Menzel, and Y. Kaufman, 2003: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from modis. IEEE Trans. Geosci. Remote Sens., 41 , 442458.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., 1997: Synoptic variability of low-cloud properties and meteorological parameters in the subtropical trade wind boundary layer. J. Climate, 10 , 20182039.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6 , 15881606.

  • Larson, V. E., R. Wood, P. R. Field, J-C. Golaz, T. H. Vonder Haar, and W. R. Cotton, 2001a: Small-scale and mesoscale variability of scalars in cloudy boundary layers: One-dimensional probability density functions. J. Atmos. Sci., 58 , 19781994.

    • Search Google Scholar
    • Export Citation
  • Larson, V. E., R. Wood, P. R. Field, J-C. Golaz, T. H. Vonder Haar, and W. R. Cotton, 2001b: Systematic biases in the microphysics and thermodynamics of numerical models that ignore subgrid-scale variability. J. Atmos. Sci., 58 , 11171128.

    • Search Google Scholar
    • Export Citation
  • Ma, X., Z. Wan, C. Moeller, W. Menzel, L. Gumley, and Y. Zhang, 2000: Retrieval of geophysical parameters from moderate resolution imaging spectroradiometer thermal infrared data: Evaluation of a two-step physical algorithm. Appl. Opt., 39 , 35373550.

    • Search Google Scholar
    • Export Citation
  • Marshak, A., A. Davis, W. Wiscombe, and R. Cahalan, 1997: Scale invariance in liquid water distributions in marine stratocumulus. Part II: Multifractal properties and intermittency issues. J. Atmos. Sci., 54 , 14231444.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 1977: The Gaussian cloud model relations. J. Atmos. Sci., 34 , 356358.

  • Nicholls, S., and J. Leighton, 1986: An observational study of the structure of stratiform cloud sheets: Part i. Structure. Quart. J. Roy. Meteor. Soc., 112 , 431460.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and R. Davies, 1998a: Plane parallel albedo biases from satellite observations. Part I: Dependence on resolution and other factors. J. Climate, 11 , 919932.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and R. Davies, 1998b: Plane parallel albedo biases from satellite observations. Part II: Parameterizations for bias removal. J. Climate, 11 , 933944.

    • Search Google Scholar
    • Export Citation
  • Park, S., C. B. Leovy, and M. A. Rozendaal, 2004: A new heuristic Lagrangian marine boundary layer cloud model. J. Atmos. Sci., 61 , 30023029.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., J. R. Snider, B. Stevens, G. Vali, I. Faloona, and L. Russell, 2006: Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical Pacific marine boundary layer. J. Geophys. Res., 111 .D02206, doi:10.1029/2004JD005694.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., and S. A. Klein, 2000: Unresolved spatial variability and microphysical process rates in large scale models. J. Geophys. Res., 105 , 2705927066.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., M. Szczodrak, J. Gu, and P. Austin, 1995: Uncertainty in cloud optical depth estimates made from satellite radiance measurements. J. Climate, 8 , 14531462.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., S. A. McFarlane, and S. A. Klein, 1999: Albedo bias and the horizontal variability of clouds in subtropical marine boundary layers: Observations from ships and satellites. J. Geophys. Res., 104 , 61836191.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 929948.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72 , 220.

  • Rossow, W. B., C. Delo, and B. Cairns, 2002: Implications of the observed mesoscale variations of clouds for earth’s radiation budget. J. Climate, 15 , 557585.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., 2000: On the “tuning” of autoconversion parameterizations in climate models. J. Geophys. Res., 105 , 1549515507.

  • Schroder, M., R. Bennartz, L. Schuller, R. Preusker, P. Albert, and J. Fischer, 2002: Generating cloud masks in spatial high-resolution observations of clouds using texture and radiance information. Int. J. Remote Sens., 23 , 42474261.

    • Search Google Scholar
    • Export Citation
  • Shao, Q., and D. A. Randall, 1996: Closed mesoscale cellular convection driven by cloud-top radiative cooling. J. Atmos. Sci., 53 , 21442165.

    • Search Google Scholar
    • Export Citation
  • Sharon, T. M., B. A. Albrecht, H. Jonsson, P. Minnis, M. M. Khaiyer, T. M. VanReken, J. Seinfeld, and R. Flagan, 2006: Aerosol and cloud microphysical characteristics of rifts and gradients in maritime stratocumulus clouds. J. Atmos. Sci., 63 , 983997.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1980: A cloud parameterization scheme derived from GATE data for use with a numerical model. Quart. J. Roy. Meteor. Soc., 106 , 747770.

    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116 , 435460.

    • Search Google Scholar
    • Export Citation
  • Sommeria, G., and J. W. Deardorff, 1977: Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci., 34 , 344355.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Pockets of open cells (POCs) and drizzle in marine stratocumulus. Bull. Amer. Meteor. Soc., 86 , 5157.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59 , 19171942.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure. J. Atmos. Sci., 62 , 30113033.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and P. R. Field, 2000: Relationships between total water, condensed water, and cloud fraction in stratiform clouds examined using aircraft data. J. Atmos. Sci., 57 , 18881905.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and J. P. Taylor, 2001: Liquid water path variability in unbroken marine stratocumulus. Quart. J. Roy. Meteor. Soc., 127 , 26352662.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2004: Boundary layer depth, entrainment and decoupling in the cloud-capped subtropical and tropical marine boundary layer. J. Climate, 17 , 35763588.

    • Search Google Scholar
    • Export Citation
  • Wood, R., P. R. Field, and W. R. Cotton, 2002: Autoconversion rate bias in boundary layer cloud parameterizations. Atmos. Res., 65 , 109128.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, J. T. Bacmeister, J. T. Kiehl, I. M. Held, Z. M. S. A. Klein, and B. A. Soden, 2006: A comparison of tropical cloud properties and responses in gems using mid-tropospheric vertical velocity. Climate Dyn., in press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1111 385 25
PDF Downloads 1031 370 30