Influence of the Seasonal Cycle on the Termination of El Niño Events in a Coupled General Circulation Model

Matthieu Lengaigne Centre for Global Atmospheric Modelling, University of Reading, Reading, United Kingdom

Search for other papers by Matthieu Lengaigne in
Current site
Google Scholar
PubMed
Close
,
Jean-Philippe Boulanger Laboratoire d’Océanographie et de Climatologie: Expérimentation et Analyse Numérique, Paris, France

Search for other papers by Jean-Philippe Boulanger in
Current site
Google Scholar
PubMed
Close
,
Christophe Menkes Laboratoire d’Océanographie et de Climatologie: Expérimentation et Analyse Numérique, Paris, France

Search for other papers by Christophe Menkes in
Current site
Google Scholar
PubMed
Close
, and
Hilary Spencer Centre for Global Atmospheric Modelling, University of Reading, Reading, United Kingdom

Search for other papers by Hilary Spencer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the mechanisms leading to the El Niño peak and demise are explored through a coupled general circulation model ensemble approach evaluated against observations. The results here suggest that the timing of the peak and demise for intense El Niño events is highly predictable as the evolution of the coupled system is strongly driven by a southward shift of the intense equatorial Pacific westerly anomalies during boreal winter. In fact, this systematic late-year shift drives an intense eastern Pacific thermocline shallowing, constraining a rapid El Niño demise in the following months. This wind shift results from a southward displacement in winter of the central Pacific warmest SSTs in response to the seasonal evolution of solar insolation.

In contrast, the intensity of this seasonal feedback mechanism and its impact on the coupled system are significantly weaker in moderate El Niño events, resulting in a less pronounced thermocline shallowing. This shallowing transfers the coupled system into an unstable state in spring but is not sufficient to systematically constrain the equatorial Pacific evolution toward a rapid El Niño termination. However, for some moderate events, the occurrence of intense easterly wind anomalies in the eastern Pacific during that period initiate a rapid surge of cold SSTs leading to La Niña conditions. In other cases, weaker trade winds combined with a slightly deeper thermocline allow the coupled system to maintain a broad warm phase evolving through the entire spring and summer and a delayed El Niño demise, an evolution that is similar to the prolonged 1986/87 El Niño event. La Niña events also show a similar tendency to peak in boreal winter, with characteristics and mechanisms mainly symmetric to those described for moderate El Niño cases.

* Current affiliation: Laboratoire d’Océanographie et de Climatologie: Expérimentation et Analyse Numérique, Paris, France

Corresponding author address: Matthieu Lengaigne, LOCEAN (ex-LODYC), Université Pierre et Marie Curie, Tour 45-55, 4eme Etage, Boite 100, 4 Place Jussien, 75252 Paris Cedex 05, France. Email: lengaign@lodyc.jussieu.fr

Abstract

In this study, the mechanisms leading to the El Niño peak and demise are explored through a coupled general circulation model ensemble approach evaluated against observations. The results here suggest that the timing of the peak and demise for intense El Niño events is highly predictable as the evolution of the coupled system is strongly driven by a southward shift of the intense equatorial Pacific westerly anomalies during boreal winter. In fact, this systematic late-year shift drives an intense eastern Pacific thermocline shallowing, constraining a rapid El Niño demise in the following months. This wind shift results from a southward displacement in winter of the central Pacific warmest SSTs in response to the seasonal evolution of solar insolation.

In contrast, the intensity of this seasonal feedback mechanism and its impact on the coupled system are significantly weaker in moderate El Niño events, resulting in a less pronounced thermocline shallowing. This shallowing transfers the coupled system into an unstable state in spring but is not sufficient to systematically constrain the equatorial Pacific evolution toward a rapid El Niño termination. However, for some moderate events, the occurrence of intense easterly wind anomalies in the eastern Pacific during that period initiate a rapid surge of cold SSTs leading to La Niña conditions. In other cases, weaker trade winds combined with a slightly deeper thermocline allow the coupled system to maintain a broad warm phase evolving through the entire spring and summer and a delayed El Niño demise, an evolution that is similar to the prolonged 1986/87 El Niño event. La Niña events also show a similar tendency to peak in boreal winter, with characteristics and mechanisms mainly symmetric to those described for moderate El Niño cases.

* Current affiliation: Laboratoire d’Océanographie et de Climatologie: Expérimentation et Analyse Numérique, Paris, France

Corresponding author address: Matthieu Lengaigne, LOCEAN (ex-LODYC), Université Pierre et Marie Curie, Tour 45-55, 4eme Etage, Boite 100, 4 Place Jussien, 75252 Paris Cedex 05, France. Email: lengaign@lodyc.jussieu.fr

Save
  • AchutaRao, K., and K. R. Sperber, and the CMIP modelling groups, 2002: Simulation of the El Niño Southern Oscillation: Results from the Coupled Model Intercomparison Project. Climate Dyn., 19 , 191209.

    • Search Google Scholar
    • Export Citation
  • An, S-I., and B. Wang, 2001: Mechanisms of locking El Niño and La Niña mature phases to boreal winter. J. Climate, 14 , 21642176.

  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46 , 16871712.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Paciic. Mon. Wea. Rev., 97 , 163172.

  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed layer physics. J. Phys. Oceanogr., 23 , 13631388.

    • Search Google Scholar
    • Export Citation
  • Boulanger, J-P., and Coauthors, 2001: Role of non-linear oceanic processes in the response to westerly wind events: New implications for the 1997 El Niño onset. Geophys. Res. Lett., 28 , 16031606.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., S. Joussaume, O. Marti, and N. de Noblet, 1999: Synergistic feedback from ocean and vegetation of the African monsoon response to mid-Holocene insolation. Geophys. Res. Lett., 26 , 24812484.

    • Search Google Scholar
    • Export Citation
  • Chang, P., L. Ji, B. Wang, and T. Li, 1995: Interactions between the seasonal cycle and El Niño–Southern Oscillation in an intermediate coupled ocean–atmosphere model. J. Atmos. Sci., 52 , 23532372.

    • Search Google Scholar
    • Export Citation
  • Collins, M., 2002: Climate predictability on interannual to decadal time scales: The initial value problem. Climate Dyn., 19 , 671692.

    • Search Google Scholar
    • Export Citation
  • Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind convergence and convection over tropical oceans. Science, 238 , 657659.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with the representation of cloud ensemble characteristics and stability dependent closure. Mon. Wea. Rev., 118 , 14831506.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., R. Kershaw, and P. M. Inness, 1997: Parametrisation of momentum transport by convection. II: Tests in single column and general circulation models. Quart. J. Roy. Meteor. Soc., 123 , 11531183.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., G. Madec, and L. Terray, 2001: The role of lateral ocean physics in the upper ocean thermal balance of a coupled ocean–atmosphere GCM. Climate Dyn., 17 , 589599.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., P. Delecluse, S. Gualdi, and A. Navarra, 2003: Mechanism for ENSO phase change in a coupled GCM. J. Climate, 16 , 11411158.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and G. A. Vecchi, 1997: Westerly wind events in the tropical Pacific, 1986–1995. J. Climate, 10 , 31313156.

  • Harrison, D. E., and N. K. Larkin, 1998: Seasonal U.S. temperature and precipitation anomalies associated with El Niño: Historical results and comparison with 1997–1998. Geophys. Res. Lett., 25 , 39593962.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and G. A. Vecchi, 1999: On the termination of El Niño. Geophys. Res. Lett., 26 , 15931596.

  • Harrison, D. E., and G. A. Vecchi, 2001: El Niño and La Niña—Equatorial Pacific thermocline depth and sea surface temperature anomalies, 1986–98. Geophys. Res. Lett., 28 , 10511054.

    • Search Google Scholar
    • Export Citation
  • Inness, P., J. M. Slingo, E. Guilyardi, and J. Cole, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16 , 365382.

    • Search Google Scholar
    • Export Citation
  • Jin, F. F., 1997: An equatorial recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Lengaigne, M., J-P. Boulanger, C. Menkes, S. Masson, G. Madec, and P. Delecluse, 2002: Ocean response to the March 1997 westerly wind event. J. Geophys. Res., 107 .8015, doi:10.1029/2001JC000841.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., G. Madec, C. Menkes, and G. Alory, 2003: The impact of isopycnal mixing on the tropical ocean circulation. J. Geophys. Res., 108 .3345, doi:10.1029/2002JC001704.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., E. Guilyardi, J-P. Boulanger, C. Menkes, P. Delecluse, P. Inness, J. Cole, and J. Slingo, 2004: Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dyn., 23 , 601620.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77 , 12751277.

    • Search Google Scholar
    • Export Citation
  • Madec, G., P. Delecluse, M. Imbard, and C. Lévy, 1998: OPA 8.1 ocean general circulation model reference manual. LODYC/IPSL Tech. Note 11, 91 pp.

  • Neelin, J. D., S. D. Battisti, A. C. Hirst, F. F. Jin, Y. Wakata, T. Yamagata, and S. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103 , 1426114290.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., F-F. Jin, and H-H. Syu, 2000: Variations in ENSO phase locking. J. Climate, 13 , 25702590.

  • Picaut, J., M. Ioualalen, C. Menkes, T. Delcroix, and M. J. McPhaden, 1996: Mechanism of the zonal displacements of the Pacific warm pool: Implications for ENSO. Science, 274 , 14861489.

    • Search Google Scholar
    • Export Citation
  • Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton, 2000: The impact of new physical parametrisations in the Hadley Centre climate model: HadAM3. Climate Dyn., 16 , 123146.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110 , 354384.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 11951202.

    • Search Google Scholar
    • Export Citation
  • Roullet, G., and G. Madec, 2000: Salt conservation, free surface and varying volume: A new formulation for ocean general circulation models. J. Geophys. Res., 105 , 2392723942.

    • Search Google Scholar
    • Export Citation
  • Spencer, H., 2004: Role of the atmosphere in the seasonality of El Niño. Geophys. Res. Lett., 31 .L24104, doi:10.1029/2004GL021619.

  • Spencer, H., and J. M. Slingo, 2003: The simulation of peak and delayed ENSO teleconnections. J. Climate, 16 , 17571774.

  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45 , 32833287.

  • Takayabu, Y. N., T. Iguchi, M. Kachi, A. Shibata, and H. Kanzawa, 1999: Abrupt termination of the 1997–98 El Niño in response to a Madden–Julian oscillation. Nature, 402 , 279282.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and G. C. Craig, 1999: Sensitivity of tropical convection to sea surface temperature in the absence of large-scale flow. J. Climate, 12 , 462476.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78 , 27712777.

  • Tziperman, E., S. Zebiak, and M. A. Cane, 1997: Mechanisms of seasonal–ENSO interaction. J. Atmos. Sci., 54 , 6171.

  • Tziperman, E., M. A. Cane, S. E. Zebiak, Y. Xue, and B. Blumenthal, 1998: Locking of El Niño’s peak time to the end of the calendar year in the delayed oscillator picture of ENSO. J. Climate, 11 , 21912199.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., L. Terray, and A. Piacentini, 2000: The OASIS coupler user guide version 2.4. CERFACS Tech. Rep. TR/CMGC/00-10, 85 pp.

  • Vecchi, G. A., and D. E. Harrison, 2003: On the termination of the 2002–2003 El Niño event. Geophys. Res. Lett., 30 .1964, doi:10.1029/2003GL017564.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., C. Menkes, J-P. Boulanger, P. Delecluse, E. Guilyardi, M. J. McPhaden, and G. Madec, 2001: Oceanic mechanisms driving the SST during the 1997–1998 El Niño. J. Phys. Oceanogr., 31 , 16491675.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and N. E. Graham, 1993: Convective cloud systems and warm pool sea surface temperatures: Coupled interactions and self-regulation. J. Geophys. Res., 98 , 1288112893.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2001: A unified oscillator model for the El Niño–Southern Oscillation. J. Climate, 14 , 98115.

  • Wang, C., and J. Picaut, 2004: Understanding ENSO physics—A review. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 21–48.

  • Weisberg, R. H., and C. Wang, 1997: A western Pacific oscillator paradigm for the El Niño–Southern Oscillation. Geophys. Res. Lett., 24 , 779782.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., 1995: Interaction between the annual and interannual variations in the equatorial Pacific. J. Phys. Oceanogr., 25 , 19301941.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 381 99 11
PDF Downloads 208 57 6