A CGCM Study on the Interaction between IOD and ENSO

Swadhin K. Behera Frontier Research Center for Global Change/JAMSTEC, Yokohama, Japan

Search for other papers by Swadhin K. Behera in
Current site
Google Scholar
PubMed
Close
,
Jing Jia Luo Frontier Research Center for Global Change/JAMSTEC, Yokohama, Japan

Search for other papers by Jing Jia Luo in
Current site
Google Scholar
PubMed
Close
,
Sebastien Masson Frontier Research Center for Global Change/JAMSTEC, Yokohama, Japan

Search for other papers by Sebastien Masson in
Current site
Google Scholar
PubMed
Close
,
Suryachandra A. Rao Frontier Research Center for Global Change/JAMSTEC, Yokohama, Japan

Search for other papers by Suryachandra A. Rao in
Current site
Google Scholar
PubMed
Close
,
Hirofumi Sakuma Frontier Research Center for Global Change/JAMSTEC, Yokohama, Japan

Search for other papers by Hirofumi Sakuma in
Current site
Google Scholar
PubMed
Close
, and
Toshio Yamagata Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan

Search for other papers by Toshio Yamagata in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An atmosphere–ocean coupled general circulation model known as the Scale Interaction Experiment Frontier version 1 (SINTEX-F1) model is used to understand the intrinsic variability of the Indian Ocean dipole (IOD). In addition to a globally coupled control experiment, a Pacific decoupled noENSO experiment has been conducted. In the latter, the El Niño–Southern Oscillation (ENSO) variability is suppressed by decoupling the tropical Pacific Ocean from the atmosphere. The ocean–atmosphere conditions related to the IOD are realistically simulated by both experiments including the characteristic east–west dipole in SST anomalies. This demonstrates that the dipole mode in the Indian Ocean is mainly determined by intrinsic processes within the basin. In the EOF analysis of SST anomalies from the noENSO experiment, the IOD takes the dominant seat instead of the basinwide monopole mode. Even the coupled feedback among anomalies of upper-ocean heat content, SST, wind, and Walker circulation over the Indian Ocean is reproduced.

As in the observation, IOD peaks in boreal fall for both model experiments. In the absence of ENSO variability the interannual IOD variability is dominantly biennial. The ENSO variability is found to affect the periodicity, strength, and formation processes of the IOD in years of co-occurrences. The amplitudes of SST anomalies in the western pole of co-occurring IODs are aided by dynamical and thermodynamical modifications related to the ENSO-induced wind variability. Anomalous latent heat flux and vertical heat convergence associated with the modified Walker circulation contribute to the alteration of western anomalies. It is found that 42% of IOD events affected by changes in the Walker circulation are related to the tropical Pacific variabilities including ENSO. The formation is delayed until boreal summer for those IODs, which otherwise form in boreal spring as in the noENSO experiment.

* Additional affiliation: Frontier Research Center for Global Change/JAMSTEC, Yokohama, Japan

Corresponding author address: Dr. Swadhin Behera, Frontier Research Center for Global Change/JAMSTEC, Showa-machi, Yokohama, Kanagawa 236-0001, Japan. Email: behera@jamstec.go.jp

Abstract

An atmosphere–ocean coupled general circulation model known as the Scale Interaction Experiment Frontier version 1 (SINTEX-F1) model is used to understand the intrinsic variability of the Indian Ocean dipole (IOD). In addition to a globally coupled control experiment, a Pacific decoupled noENSO experiment has been conducted. In the latter, the El Niño–Southern Oscillation (ENSO) variability is suppressed by decoupling the tropical Pacific Ocean from the atmosphere. The ocean–atmosphere conditions related to the IOD are realistically simulated by both experiments including the characteristic east–west dipole in SST anomalies. This demonstrates that the dipole mode in the Indian Ocean is mainly determined by intrinsic processes within the basin. In the EOF analysis of SST anomalies from the noENSO experiment, the IOD takes the dominant seat instead of the basinwide monopole mode. Even the coupled feedback among anomalies of upper-ocean heat content, SST, wind, and Walker circulation over the Indian Ocean is reproduced.

As in the observation, IOD peaks in boreal fall for both model experiments. In the absence of ENSO variability the interannual IOD variability is dominantly biennial. The ENSO variability is found to affect the periodicity, strength, and formation processes of the IOD in years of co-occurrences. The amplitudes of SST anomalies in the western pole of co-occurring IODs are aided by dynamical and thermodynamical modifications related to the ENSO-induced wind variability. Anomalous latent heat flux and vertical heat convergence associated with the modified Walker circulation contribute to the alteration of western anomalies. It is found that 42% of IOD events affected by changes in the Walker circulation are related to the tropical Pacific variabilities including ENSO. The formation is delayed until boreal summer for those IODs, which otherwise form in boreal spring as in the noENSO experiment.

* Additional affiliation: Frontier Research Center for Global Change/JAMSTEC, Yokohama, Japan

Corresponding author address: Dr. Swadhin Behera, Frontier Research Center for Global Change/JAMSTEC, Showa-machi, Yokohama, Kanagawa 236-0001, Japan. Email: behera@jamstec.go.jp

Save
  • Annamalai, H., R. Murtugudde, J. Potemra, S. P. Xie, P. Liu, and B. Wang, 2003: Coupled dynamics over the Indian Ocean: Spring initiation of the Zonal Mode. Deep-Sea Res., 50 , 23052330.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., W. Chan, T. Motoi, and T. Yamagata, 2004: Decadal variability of the Indian Ocean Dipole. Geophys. Res. Lett., 31 .L24207, doi:10.1029/2004GL021345.

    • Search Google Scholar
    • Export Citation
  • Baquero-Bernal, A., M. Latif, and S. Legutke, 2002: On dipole-like variability in the tropical Indian Ocean. J. Climate, 15 , 13581368.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., and T. Yamagata, 2001: Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett., 28 , 327330.

  • Behera, S. K., and T. Yamagata, 2003: Influence of the Indian Ocean Dipole on the Southern Oscillation. J. Meteor. Soc. Japan, 81 , 169177.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., R. Krishnan, and T. Yamagata, 1999: Unusual ocean-atmosphere conditions in the tropical Indian Ocean during 1994. Geophys. Res. Lett., 26 , 30013004.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., P. S. Salvekar, and T. Yamagata, 2000: Simulation of interannual SST variability in the tropical Indian Ocean. J. Climate, 13 , 34873499.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., S. A. Rao, H. N. Saji, and T. Yamagata, 2003: Comments on “A cautionary note on the interpretation of EOFs.”. J. Climate, 16 , 10871093.

    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J-J. Luo, S. Masson, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2005: Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Climate, 18 , 45144530.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97 , 163172.

  • Cai, W., H. Hendon, and G. Meyers, 2005: Indian Ocean dipole-like variability in the CSIRO Mark 3 coupled climate model. J. Climate, 18 , 14491468.

    • Search Google Scholar
    • Export Citation
  • Carton, J., G. Chepurin, X. Cao, and B. Giese, 2000: A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30 , 294309.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and X. Liu, 1994: Interannual sea level in the northern and eastern Indian Ocean. J. Phys. Oceanogr., 24 , 12241235.

  • Dommenget, D., and M. Latif, 2002: A cautionary note on the interpretation of EOFs. J. Climate, 15 , 216225.

  • Feng, M., and G. Meyers, 2003: Interannual variability in the tropical Indian Ocean: A two-year time scale of IOD. Deep-Sea Res., 50B , 22632284.

    • Search Google Scholar
    • Export Citation
  • Gualdi, S., E. Guilyardi, A. Navarra, S. Masina, and P. Delecluse, 2003: The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Climate Dyn., 20 , 567582.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., P. Delecluse, S. Gualdi, and A. Navarra, 2001: The role of lateral ocean physics in the upper ocean thermal balance of a coupled ocean-atmosphere GCM. Climate Dyn., 17 , 589599.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 2002: Dipoles, temperature gradient, and tropical climate anomalies. Bull. Amer. Meteor. Soc., 83 , 735738.

  • Hastenrath, S., and D. Polzin, 2004: Dynamics of the surface wind field over the equatorial Indian Ocean. Quart. J. Roy. Meteor. Soc., 130 , 503517.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., A. Nicklis, and L. Greischar, 1993: Atmospheric-hydrospheric mechanisms of climate anomalies in the western equatorial Indian Ocean. J. Geophys. Res., 98 , C11. 2021920235.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., 2003: Indonesian rainfall variability: Impacts of ENSO and local air–sea interaction. J. Climate, 16 , 17751790.

  • Huang, B., and J. L. Kinter III, 2002: The interannual variability in the tropical Indian Ocean. J. Geophys. Res., 107 .3199, doi:10:1029/2001JC001278.

    • Search Google Scholar
    • Export Citation
  • Iizuka, S., T. Matsuura, and T. Yamagata, 2000: The Indian Ocean SST dipole simulated in a coupled general circulation model. Geophys. Res. Lett., 27 , 33693372.

    • Search Google Scholar
    • Export Citation
  • Jury, R. M., and B. Huang, 2004: The Rossby wave as a key mechanism of Indian Ocean climate variability. Deep-Sea Res., 51 , 21232136.

    • Search Google Scholar
    • Export Citation
  • Kawamura, R., 1994: A rotated EOF analysis of global sea surface temperature variability with interannual and decadal scales. J. Phys. Oceanogr., 24 , 707715.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12 , 917932.

    • Search Google Scholar
    • Export Citation
  • Lau, N-C., and M. J. Nath, 2004: Coupled GCM simulation of atmosphere–ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean. J. Climate, 17 , 245265.

    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, C. P. Chang, and Y. Zhang, 2003: A theory for the Indian Ocean dipole–zonal mode. J. Atmos. Sci., 60 , 21192135.

  • Luo, J. J., S. Masson, S. Behera, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2003: South Pacific origin of the decadal ENSO-like variations as simulated by a coupled GCM. Geophys. Res. Lett., 30 .2250, doi:10.1029/2003GL018649.

    • Search Google Scholar
    • Export Citation
  • Luo, J. J., S. Masson, S. Behera, S. Shingu, and T. Yamagata, 2005a: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J. Climate, 18 , 44744497.

    • Search Google Scholar
    • Export Citation
  • Luo, J. J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata, 2005b: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics. J. Climate, 18 , 23442360.

    • Search Google Scholar
    • Export Citation
  • Madec, G., P. Delecluse, M. Imbard, and C. Levy, 1998: OPA version 8.1 ocean general circulation model reference manual. Tech. Rep./Note 11, LODYC/IPSL, Paris, France, 91 pp.

  • Masson, S., and Coauthors, 2005: Impact of barrier layer on winter-spring variability of the southeastern Arabian Sea. Geophys. Res. Lett., 32 .L07703, doi:10.1029/2004GL021980.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., P. K. Kundu, and R. Molinari, 1993: A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Progress in Oceanography, Vol. 31, Pergamon, 181–244.

  • Meyers, G., 1996: Variation of Indonesian throughflow and El Niño-Southern Oscillation. J. Geophys. Res., 101 , 1225512263.

  • Murtugudde, R., and A. J. Busalacchi, 1999: Interannual variability in the dynamics and thermodynamics of the tropical Indian Ocean. J. Climate, 12 , 23002326.

    • Search Google Scholar
    • Export Citation
  • Pan, Y-H., and A. Oort, 1990: Correlation analyses between sea surface temperature anomalies in the eastern equatorial Pacific and the world ocean. Climate Dyn., 4 , 191205.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., and T. Yamagata, 2004: Abrupt termination of Indian Ocean dipole events in response to intraseasonal disturbances. Geophys. Res. Lett., 31 .L19306, doi:10.1029/2004GL020842.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., and S. K. Behera, 2005: Subsurface influence on SST in the tropical Indian Ocean structure and interannual variabilities. Dyn. Atmos. Oceans, 39 , 103135.

    • Search Google Scholar
    • Export Citation
  • Rao, S. A., S. K. Behera, Y. Masumoto, and T. Yamagata, 2002: Interannual variability in the subsurface tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep-Sea Res., 49B , 15491572.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM4: Model description and simulation of present day climate. Max-Plank-Institut fur Meteorologie Rep. 218, Hamburg, Germany, 90 pp.

  • Saji, N. H., and T. Yamagata, 2003: Interference of teleconnection patterns generated from the tropical Indian and Pacific Oceans. Climate Res., 25 , 151169.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401 , 360363.

    • Search Google Scholar
    • Export Citation
  • Shinoda, T., M. A. Alexander, and H. H. Hendon, 2004: Remote response of the Indian Ocean to interannual SST variations in the tropical Pacific. J. Climate, 17 , 362372.

    • Search Google Scholar
    • Export Citation
  • Suzuki, R., S. K. Behera, S. Iizuka, and T. Yamagata, 2004a: The Indian Ocean subtropical dipole simulated using a CGCM. J. Geophys. Res., 109 .C09001, doi:10.1029/2003JC001974.

    • Search Google Scholar
    • Export Citation
  • Tourre, Y. M., and W. B. White, 1995: ENSO signals in global upper-ocean temperature. J. Phys. Oceangr., 25 , 13171332.

  • Tozuka, T., J-J. Luo, S. Masson, S. K. Behera, and T. Yamagata, 2005: Annual ENSO simulated in a coupled ocean-atmosphere model. Dyn. Atmos. Oceans, 39 , 4160.

    • Search Google Scholar
    • Export Citation
  • Tozuka, T., J-J. Luo, S. Masson, and T. Yamagata, 2006: Decadal Indian Ocean dipole simulated in an ocean–atmosphere coupled model. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., L. Terray, and A. Piacentini, 2000: The OASIS coupler user guide version 2.4. Tech. Rep. TR/CMGC/00-10, CERFACS, Toulouse, France, 85 pp.

  • Venzke, S., M. Latif, and A. Villwock, 2000: The coupled GCM ECHO-2. Part II: Indian Ocean response to ENSO. J. Climate, 13 , 13711383.

    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P. N., N. H. Saji, and T. Yamagata, 1999: Response of the equatorial Indian Ocean to an anomalous wind event during 1994. Geophys. Res. Lett., 26 , 16131616.

    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., 2005: Forecasting extreme events in the tropical Indian Ocean sector climate. Dyn. Atmos. Oceans, 39 , 137151.

  • Webster, P. J., A. Moore, J. Loschnigg, and M. Leban, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401 , 356360.

    • Search Google Scholar
    • Export Citation
  • White, W. B., and D. R. Cayan, 2000: A global El Niño–Southern Oscillation wave in surface temperature and pressure and its interdecadal modulation from 1900 to 1997. J. Geophys. Res., 105 , 1123211242.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., H. Annamalai, F. Schott, and J. P. McCreary, 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate, 15 , 864878.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., and Y. Masumoto, 1989: A simple ocean-atmosphere coupled model for the origin of a warm El Niño Southern Oscillation event. Philos. Trans. Roy. Soc. London, 329 , 225236.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., S. K. Behera, S. A. Rao, Z. Guan, K. Ashok, and H. N. Saji, 2003: Comments on “Dipoles, temperature gradient, and tropical climate anomalies.”. Bull. Amer. Meteor. Soc., 84 , 14181422.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., S. K. Behera, J-J. Luo, S. Masson, M. Jury, and S. A. Rao, 2004: Coupled ocean-atmosphere variability in the tropical Indian Ocean. Earth Climate: The Ocean-Atmosphere Interaction, Geophys. Monogr., No. 147, Amer. Geophys. Union, 189–212.

  • Yasunari, T., 1985: Zonally propagating modes of the global east-west circulation associated with the Southern Oscillation. J. Meteor. Soc. Japan, 63 , 10131029.

    • Search Google Scholar
    • Export Citation
  • Yu, J-Y., and K. M. Lau, 2004: Contrasting Indian Ocean SST variability with and without ENSO influence: A coupled atmosphere-ocean GCM study. Meteor. Atmos. Phys., 90 .doi:10.1007/s00703-004-0094-7.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2139 731 37
PDF Downloads 1665 502 34