Nimbus-7 Global Cloud Climatology. Part II: First Year Results

Larry L. Stowe NOAA/NESDIS, Washington, D.C

Search for other papers by Larry L. Stowe in
Current site
Google Scholar
PubMed
Close
,
H. Y. Michael Yeh ST Systems Corporation, Hyattsville, Maryland

Search for other papers by H. Y. Michael Yeh in
Current site
Google Scholar
PubMed
Close
,
Thomas F. Eck Science Application Research, Lanham, Maryland

Search for other papers by Thomas F. Eck in
Current site
Google Scholar
PubMed
Close
,
Charlie G. Wellemeyer ST Systems Corporation, Hyuttsville, Maryland

Search for other papers by Charlie G. Wellemeyer in
Current site
Google Scholar
PubMed
Close
,
H. Lee Kyle NASA/Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by H. Lee Kyle in
Current site
Google Scholar
PubMed
Close
, and
The Nimbus-7 Cloud Data Processing Team NOAA/NESDIS, Washington, D.C
ST Systems Corporation, Hyattsville, Maryland
Science Application Research, Lanham, Maryland
ST Systems Corporation, Hyuttsville, Maryland
NASA/Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by The Nimbus-7 Cloud Data Processing Team in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Regional and seasonal variations in global cloud cover observed by the Nimbus-7 satellite over 1 year are analyzed by examining the 4 midseason months—April, July and October 1979 and January 1980. The Nimbus-7 data set is generated from the Temperature Humidity Infrared Radiometer (THIR) 11.5 micron radiances together with Total Ozone Mapping Spectometer (TOMS)-derived UV reflectivities, climatological atmospheric temperature lapse rates, and concurrent surface temperature and snow/ice information from the Air Force three-dimensional-nephanalysis (3DN) archive. The analysis presented here includes total cloud amount, cloud amounts at high, middle and low altitudes, cirrus and deep convective clouds and cloud and cloud-sky 11.5 micron-derived radiances. Also, noon versus midnight cloud amounts are examined and the Nimbus-7 data are compared to three previously published cloud climatologies.

The Nimbus-7 bispectral algorithm gives a monthly mean global noontime cloud cover of 51%, averaged over the 4 months. When only the IR is used, this cloud cover is 49% at noontime and 56% at midnight, indicating that the Earth's cloud cover has a substantial diurnal cycle. Each hemisphere shows a cloud cover maximum in its summer and a minimum in its winter. The Southern Hemisphere shows more clouds than the Northern Hemisphere except for the month of July.

The difference between the cloud-top and clear-scene radiance has maxima in the equatorial cloud belt and minima in the polar regions. Because of thew polar minima and the frequent presence of snow, Nimbus-7 cloud traction estimates are less reliable in the polar regions. In the tropics the data show more clouds at midnight than at noon. Over the tropical ocean, overcast regions show lower cloud top radiation temperatures at noon than at midnight, but over land the reverse occurs.

In July, cloud amounts in the intertropical convergence zone (ITCZ) peak at about 10°N latitude with local maxima greater than 70% around the west coasts of Africa and Central America, and from India east to the dateline. Cloud-top radiances indicate that mid- and high-level clouds predominate in the ITCZ, with 5% to 15% each of cirrus and deep convective clouds, respectively. In January, the peak of the ITCZ shifts to 10°S with local cloud maxima greater than 90% over Brazil and to the north and northwest of Australia. Comparison is made with several other cloud data sets, including a look at the new preliminary International Satellite Cloud Climatology Project (ISCCP) results. There are considerable differences among the several data sets examined.

Abstract

Regional and seasonal variations in global cloud cover observed by the Nimbus-7 satellite over 1 year are analyzed by examining the 4 midseason months—April, July and October 1979 and January 1980. The Nimbus-7 data set is generated from the Temperature Humidity Infrared Radiometer (THIR) 11.5 micron radiances together with Total Ozone Mapping Spectometer (TOMS)-derived UV reflectivities, climatological atmospheric temperature lapse rates, and concurrent surface temperature and snow/ice information from the Air Force three-dimensional-nephanalysis (3DN) archive. The analysis presented here includes total cloud amount, cloud amounts at high, middle and low altitudes, cirrus and deep convective clouds and cloud and cloud-sky 11.5 micron-derived radiances. Also, noon versus midnight cloud amounts are examined and the Nimbus-7 data are compared to three previously published cloud climatologies.

The Nimbus-7 bispectral algorithm gives a monthly mean global noontime cloud cover of 51%, averaged over the 4 months. When only the IR is used, this cloud cover is 49% at noontime and 56% at midnight, indicating that the Earth's cloud cover has a substantial diurnal cycle. Each hemisphere shows a cloud cover maximum in its summer and a minimum in its winter. The Southern Hemisphere shows more clouds than the Northern Hemisphere except for the month of July.

The difference between the cloud-top and clear-scene radiance has maxima in the equatorial cloud belt and minima in the polar regions. Because of thew polar minima and the frequent presence of snow, Nimbus-7 cloud traction estimates are less reliable in the polar regions. In the tropics the data show more clouds at midnight than at noon. Over the tropical ocean, overcast regions show lower cloud top radiation temperatures at noon than at midnight, but over land the reverse occurs.

In July, cloud amounts in the intertropical convergence zone (ITCZ) peak at about 10°N latitude with local maxima greater than 70% around the west coasts of Africa and Central America, and from India east to the dateline. Cloud-top radiances indicate that mid- and high-level clouds predominate in the ITCZ, with 5% to 15% each of cirrus and deep convective clouds, respectively. In January, the peak of the ITCZ shifts to 10°S with local cloud maxima greater than 90% over Brazil and to the north and northwest of Australia. Comparison is made with several other cloud data sets, including a look at the new preliminary International Satellite Cloud Climatology Project (ISCCP) results. There are considerable differences among the several data sets examined.

Save