• Arain, A., T. A. Black, A. G. Barr, P. G. Jarvis, J. M. Massheder, D. L. Verseghy, and Z. Nesic, 2002: Effects of seasonal and interannual climate variability on net ecosystem productivity of boreal deciduous and conifer forests. Can. J. For. Res., 32 , 878891.

    • Search Google Scholar
    • Export Citation
  • Barber, V. A., G. P. Juday, and B. P. Finney, 2000: Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature, 405 , 668673.

    • Search Google Scholar
    • Export Citation
  • Bergengren, J. C., S. L. Thompson, D. Pollard, and R. M. Deconto, 2001: Modeling global climate–vegetation interactions in a doubled CO2 world. Climatic Change, 50 , 3175.

    • Search Google Scholar
    • Export Citation
  • Berry, J. A., and O. Bjorkman, 1980: Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol., 31 , 491543.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., P. M. Cox, S. E. Lee, and F. I. Woodward, 1997: Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature, 387 , 796799.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., P. M. Cox, M. Collins, P. Harris, C. Huntingford, and C. D. Jones, 2004: The role of ecosystem–atmosphere interactions in simulated Amazonian precipitation decrease and forecast dieback under global warming. Theor. Appl. Climatol., 78 , 157175.

    • Search Google Scholar
    • Export Citation
  • Boenisch, G., S. P. Harrison, and I. C. Prentice, and Biome 6000 members, 2001: BIOME 6000 data release 1. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 2001-046, NOAA/NGDC Paleoclimatology Program, Boulder CO.

  • Bonan, G., 2002: Ecological Climatology: Concepts and Applications. Cambridge University Press, 678 pp.

  • Bonan, G. B., D. Pollard, and S. L. Thompson, 1992: Effects of boreal forest vegetation on global climate. Nature, 359 , 716718.

  • Bounoua, L., and Coauthors, 1999: Interactions between vegetation and climate: Radiative and physiological effects of doubled atmospheric CO2. J. Climate, 12 , 309324.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., 1960: A coefficient of agreement for nominal scales. Educ. Psychol. Meas., 20 , 3746.

  • Costa, M. H., and J. A. Foley, 2000: Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J. Climate, 13 , 1834.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408 , 184187.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, M. Collins, P. P. Harris, C. Huntingford, and C. D. Jones, 2004: Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor. Appl. Climatol., 78 , 137156.

    • Search Google Scholar
    • Export Citation
  • Cramer, B. A., and Coauthors, 2001: Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biol., 7 , 357373.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 525–582.

    • Search Google Scholar
    • Export Citation
  • Curtis, P. S., 1996: A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant Cell Environ., 19 , 127137.

    • Search Google Scholar
    • Export Citation
  • Drake, B. G., M. A. Gonzalez-Meler, and S. P. Long, 1997: More efficient plants: A consequence of rising atmospheric CO2? Annu. Rev. Plant Physiol. Plant Mol. Biol., 48 , 609639.

    • Search Google Scholar
    • Export Citation
  • Drake, J., I. Foster, J. Michalakes, B. Toonen, and P. Worley, 1995: Design and performance of a scalable parallel community climate model. Parallel Comput., 21 , 10. 15711591.

    • Search Google Scholar
    • Export Citation
  • Farquhar, G. D., 1997: Carbon dioxide and vegetation. Science, 278 , 1411.

  • Field, C., R. Jackson, and H. Mooney, 1995: Stomatal responses to increased CO2: Implications from the plant to the global scale. Plant Cell Environ., 18 , 12141225.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., J. E. Kutzbach, M. T. Coe, and S. Levis, 1994: Feedbacks between climate and boreal forests during the Holocene epoch. Nature, 371 , 5254.

    • Search Google Scholar
    • Export Citation
  • Foley, J. A., S. Levis, M. H. Costa, W. Cramer, and D. Pollard, 2000: Incorporating dynamic vegetation cover within global climate models. Ecol. Appl., 10 , 6. 16201632.

    • Search Google Scholar
    • Export Citation
  • Gallimore, R., R. L. Jacob, and J. E. Kutzbach, 2005: Coupled atmosphere–ocean–vegetation simulations for modern and mid-Holocene climates: Role of extratropical vegetation cover feedbacks. Climate Dyn., 25 , 755776.

    • Search Google Scholar
    • Export Citation
  • Harrison, S. P., and Coauthors, 1998: Intercomparison of simulated global vegetation distributions in response to 6 kyr BP orbital forcing. J. Climate, 11 , 27212742.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, A., A. J. Pitman, P. K. Love, P. Irannejad, and T. H. Chen, 1995: The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3. Bull. Amer. Meteor. Soc., 76 , 489503.

    • Search Google Scholar
    • Export Citation
  • Jacob, R. L., 1997: Low frequency variability in a simulated atmosphere ocean system. Ph.D. thesis, University of Wisconsin—Madison, 159 pp.

  • Jacob, R., C. Schafer, I. Foster, M. Tobis, and J. Anderson, 2001: Computational design and performance of the Fast Ocean Atmosphere Model, version one. Proceedings of the 2001 International Conference on Computational Science, V. N. Alexandrov, J. J. Dongarra, and C. J. K. Tan, Eds., Springer-Verlag, 175–184.

    • Search Google Scholar
    • Export Citation
  • Joos, F., I. C. Prentice, S. Sitch, R. Meyer, G. Hooss, G-K. Plattner, S. Gerber, and K. Hasselmann, 2001: Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochem. Cycles, 15 , 891907.

    • Search Google Scholar
    • Export Citation
  • Joos, F., S. Gerber, I. C. Prentice, B. L. Otto-Bliesner, and P. J. Valdes, 2004: Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum. Global Biogeochem. Cycles, 18 .GB2002, doi:10.1029/2003GB002156.

    • Search Google Scholar
    • Export Citation
  • Koch, G. W., and H. A. Mooney, 1996: Response of terrestrial ecosystems to elevated CO2: A synthesis and summary. Carbon Dioxide and Terrestrial Ecosystems, G. W. Koch and H. A. Mooney, Eds., Academic Press, 415–429.

    • Search Google Scholar
    • Export Citation
  • Körner, C., 2000: Biosphere responses to CO2 enrichment. Ecol. Appl., 10 , 15901619.

  • Kutzbach, J. E., J. Williams, and S. Vavrus, 2005: Simulated 21st century changes in regional water balance of the Great Lakes region and links to changes in global temperature and poleward moisture transport. Geophys. Res. Lett., 32 .L17707, doi:10.1029/2005GL023506.

    • Search Google Scholar
    • Export Citation
  • Laine, V., and M. Heikinheimo, 1996: Estimation of surface albedo from NOAA AVHRR data in high latitudes. Tellus, 48A , 424441.

  • Levis, S., J. A. Foley, and D. Pollard, 1999: Potential high-latitude vegetation feedbacks on CO2-induced climate change. Geophys. Res. Lett., 26 , 747750.

    • Search Google Scholar
    • Export Citation
  • Levis, S., J. A. Foley, and D. Pollard, 2000: Large-scale vegetation feedbacks on a doubled CO2 climate. J. Climate, 13 , 13131325.

  • Liu, Z., and L. Wu, 2004: Atmospheric response to North Pacific SST anomaly: The role of ocean–atmosphere coupling. J. Climate, 17 , 18591882.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., J. Kutzbach, and L. Wu, 2000: Modeling climate shift of El Niño in the Holocene. Geophys. Res. Lett., 27 , 22652268.

  • Liu, Z., M. Notaro, J. Kutzbach, and N. Liu, 2006: An observational assessment of global vegetation–climate feedbacks. J. Climate, 19 , 787814.

    • Search Google Scholar
    • Export Citation
  • Lloyd, A. H., and C. L. Fastie, 2002: Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Climatic Change, 52 , 418509.

    • Search Google Scholar
    • Export Citation
  • McGuire, A. D., and Coauthors, 2001: Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cycles, 15 , 183206.

    • Search Google Scholar
    • Export Citation
  • Menzel, A., and P. Fabian, 1999: Growing season extended in Europe. Nature, 397 , 659.

  • Monserud, R. A., 1990: Methods for comparing global vegetation maps. Working Paper WP-90-40, IIASA, Laxenburg, Austria, 22 pp. [Available from International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg A-2361, Austria.].

  • Mooney, H. A., and Coauthors, 1999: Ecosystem physiology responses to global change. Implications of Global Change for Natural and Managed Ecosystems: A Synthesis of GCTE and Related Research, B. H. Walker et al., Eds., IGBP Book Series, Vol. 4, Cambridge University Press, 141–189.

    • Search Google Scholar
    • Export Citation
  • Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani, 1997: Increased plant growth in the northern high latitudes from 1981–1991. Nature, 386 , 698701.

    • Search Google Scholar
    • Export Citation
  • Narisma, G. T., and A. J. Pitman, 2003: The impact of 200 years of land cover change on the Australian near-surface climate. J. Hydrometeor., 4 , 424436.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., Z. Liu, R. Gallimore, S. J. Vavrus, J. E. Kutzbach, I. C. Prentice, and R. L. Jacob, 2005: Simulated and observed preindustrial to modern vegetation and climate changes. J. Climate, 18 , 36503671.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., Z. Liu, and J. W. Williams, 2006: Observed vegetation–climate feedbacks in the United States. J. Climate, 19 , 763786.

  • Pielke, R., R. Avissar, M. Raupach, A. J. Dolman, X. Zhen, and A. S. Denning, 1998: Interactions between the atmosphere and terrestrial ecosystems: Influence of weather and climate. Global Change Biol., 4 , 461475.

    • Search Google Scholar
    • Export Citation
  • Pollard, D., and S. L. Thompson, 1995: Use of a land-surface transfer scheme (LSX) in a global climate model: The response to doubling stomatal conductance. Global Planet. Change, 10 , 129161.

    • Search Google Scholar
    • Export Citation
  • Polley, H. W., H. B. Johnson, B. D. Marino, and H. S. Mayeux, 1993: Increase in C3 plant water use efficiency and biomass over glacial to present CO2 concentrations. Nature, 361 , 6164.

    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R. W., and T. P. Barnett, 1983: Numerical model–reality intercomparison tests using small-sample statistics. J. Atmos. Sci., 40 , 18841896.

    • Search Google Scholar
    • Export Citation
  • Prentice, I. C., W. Cramer, S. P. Harrison, R. Leemans, R. A. Monserud, and A. M. Solomon, 1992: A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr., 19 , 117134.

    • Search Google Scholar
    • Export Citation
  • Prentice, C. I., J. Guiot, B. Huntley, D. Jolly, and R. Cheddadi, 1996: Reconstructing biomes from palaeoecological data: A general method and its application to European pollen data at 0 and 6 ka. Climate Dyn., 12 , 185194.

    • Search Google Scholar
    • Export Citation
  • Pritchard, S. G., H. H. Rogers, S. A. Prior, and C. M. Peterson, 1999: Elevated CO2 and plant structure: A review. Global Change Biol., 5 , 807837.

    • Search Google Scholar
    • Export Citation
  • Robinson, D. A., and G. Kukla, 1985: Maximum surface albedo of seasonally snow-covered lands in the Northern Hemisphere. J. Climate Appl. Meteor., 24 , 402411.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1996: Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science, 271 , 14021406.

    • Search Google Scholar
    • Export Citation
  • Sharratt, B. S., 1998: Radiative exchange, near-surface temperature and soil water of forest and cropland in interior Alaska. Agric. For. Meteor., 89 , 269280.

    • Search Google Scholar
    • Export Citation
  • Sitch, S., 2000: The role of vegetation dynamics in the control of atmospheric CO2 content. Ph.D. dissertation, Lund University, Lund, Sweden, 213 pp.

  • Sitch, S., and Coauthors, 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol., 9 , 161185.

    • Search Google Scholar
    • Export Citation
  • Stolbovoi, V., 1999: Classification of Russia’s forests in relation to global climate warming. Interim Rep. IR-99-005, International Institute for Applied Systems Analysis, 24 pp.

  • Thonicke, K., S. Venevsky, S. Sitch, and W. Cramer, 2001: The role of fire disturbance for global vegetation dynamics: Coupling fire into a Dynamic Global Vegetation Model. Global Ecol. Biogeogr., 10 , 661677.

    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., and B. D. Santer, 1990: Statistical comparison of spatial fields in model validation, perturbation, and predictability experiments. J. Geophys. Res., 95 , 851865.

    • Search Google Scholar
    • Export Citation
  • Wilmking, M., G. P. Juday, V. A. Barber, and H. S. J. Zald, 2004: Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biol., 10 , 17241736.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and Z. Liu, 2002: Is tropical Atlantic variability driven by the North Atlantic Oscillation? Geophys. Res. Lett., 29 .1653, doi:10.1029/2002GL014939.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and Z. Liu, 2003: Decadal variability in North Pacific: The eastern North Pacific mode. J. Climate, 16 , 31113131.

  • Wu, L., Z. Liu, and R. Gallimore, 2003: Pacific decadal variability: The tropical Pacific mode and North Pacific mode. J. Climate, 16 , 11011120.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., A. J. Pitman, and T. Chase, 2001: The impact of land cover change on the atmospheric circulation. Climate Dyn., 17 , 467477.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., C. J. Tucker, R. K. Kaufmann, D. Slayback, N. V. Shabanov, and R. B. Myneni, 2001: Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res., 106 , 2006920083.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1502 341 28
PDF Downloads 1094 244 16

Global Vegetation and Climate Change due to Future Increases in CO2 as Projected by a Fully Coupled Model with Dynamic Vegetation

Michael NotaroCenter for Climatic Research, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Michael Notaro in
Current site
Google Scholar
PubMed
Close
,
Steve VavrusCenter for Climatic Research, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Steve Vavrus in
Current site
Google Scholar
PubMed
Close
, and
Zhengyu LiuCenter for Climatic Research, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Zhengyu Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Transient simulations are presented of future climate and vegetation associated with continued rising levels of CO2. The model is a fully coupled atmosphere–ocean–land–ice model with dynamic vegetation. The impacts of the radiative and physiological forcing of CO2 are diagnosed, along with the role of vegetation feedbacks. While the radiative effect of rising CO2 produces most of the warming, the physiological effect contributes additional warming by weakening the hydrologic cycle through reduced evapotranspiration. Both effects cause drying over tropical rain forests, while the radiative effect enhances Arctic and Indonesian precipitation.

A global greening trend is simulated primarily due to the physiological effect, with an increase in photosynthesis and total tree cover associated with enhanced water-use efficiency. In particular, tree cover is enhanced by the physiological effect over moisture-limited regions. Over Amazonia, South Africa, and Australia, the radiative forcing produces soil drying and reduced forest cover. A poleward shift of the boreal forest is simulated as both the radiative and physiological effects enhance vegetation growth in the northern tundra and the radiative effect induces drying and summertime heat stress on the central and southern boreal forest. Vegetation feedbacks substantially impact local temperature trends through changes in albedo and evapotranspiration. The physiological effect increases net biomass across most land areas, while the radiative effect results in an increase over the tundra and decrease over tropical forests and portions of the boreal forest.

* Center for Climatic Research Contribution Number 913

Corresponding author address: Dr. Michael Notaro, Center for Climatic Research, University of Wisconsin—Madison, 1225 West Dayton St., Madison, WI 53706. Email: mnotaro@wisc.edu

Abstract

Transient simulations are presented of future climate and vegetation associated with continued rising levels of CO2. The model is a fully coupled atmosphere–ocean–land–ice model with dynamic vegetation. The impacts of the radiative and physiological forcing of CO2 are diagnosed, along with the role of vegetation feedbacks. While the radiative effect of rising CO2 produces most of the warming, the physiological effect contributes additional warming by weakening the hydrologic cycle through reduced evapotranspiration. Both effects cause drying over tropical rain forests, while the radiative effect enhances Arctic and Indonesian precipitation.

A global greening trend is simulated primarily due to the physiological effect, with an increase in photosynthesis and total tree cover associated with enhanced water-use efficiency. In particular, tree cover is enhanced by the physiological effect over moisture-limited regions. Over Amazonia, South Africa, and Australia, the radiative forcing produces soil drying and reduced forest cover. A poleward shift of the boreal forest is simulated as both the radiative and physiological effects enhance vegetation growth in the northern tundra and the radiative effect induces drying and summertime heat stress on the central and southern boreal forest. Vegetation feedbacks substantially impact local temperature trends through changes in albedo and evapotranspiration. The physiological effect increases net biomass across most land areas, while the radiative effect results in an increase over the tundra and decrease over tropical forests and portions of the boreal forest.

* Center for Climatic Research Contribution Number 913

Corresponding author address: Dr. Michael Notaro, Center for Climatic Research, University of Wisconsin—Madison, 1225 West Dayton St., Madison, WI 53706. Email: mnotaro@wisc.edu

Save