• Alexander, M. A., and Coauthors, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. 2. Single column tests using GATE Wave, BOMEX, ATEX and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112 , 693709.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1998: The land surface climatology of the NCAR Land Surface Model coupled to the NCAR Community Climate Model. J. Climate, 11 , 13071325.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15 , 26162631.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and B. R. Lintner, 2005: Mechanisms of remote tropical surface warming during El Niño. J. Climate, 18 , 41304149.

  • Chiang, J. C. H., M. Biasutti, and D. S. Battisti, 2003: Sensitivity of the Atlantic intertropical convergence zone to Last Glacial Maximum boundary conditions. Paleoceanography, 18 .1094, doi:10.1029/2003PA000916.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17 , 26882701.

  • Chou, C., J. D. Neelin, and H. Su, 2001: Ocean–atmosphere–land feedbacks in an idealized monsoon. Quart. J. Roy. Meteor. Soc., 127 , 18691891.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: Convectively coupled Kelvin waves in an idealized moist general circulation model. J. Atmos. Sci., 64 , 20762090.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., and Coauthors, 2001: The ENSO teleconnection to the tropical Atlantic Ocean: Contributions of the remote and local SSTs to rainfall variability in the tropical Americas. J. Climate, 14 , 45304544.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Gill, A. E., 1982a: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gill, A. E., 1982b: Studies of moisture effects in simple atmospheric models: The stable case. Astrophys. Fluid Dyn., 19 , 119152.

  • Hales, K., J. D. Neelin, and N. Zeng, 2004: Sensitivity of tropical land climate to leaf area index: Role of surface conductance versus albedo. J. Climate, 17 , 14591473.

    • Search Google Scholar
    • Export Citation
  • Heckley, W. A., and A. E. Gill, 1984: Some simple analytic solutions to the problem of forced equatorial long waves. Quart. J. Roy. Meteor. Soc., 110 , 203217.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kidson, J. W., 1975: Tropical eigenvector analysis and Southern Oscillation. Mon. Wea. Rev., 103 , 187196.

  • Kiehl, J. T., and Coauthors, 1998: The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11 , 11311149.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12 , 917932.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and K. M. Weickmann, 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115 , 14071436.

    • Search Google Scholar
    • Export Citation
  • Lau, N. C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9 , 20362057.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., and J. C. H. Chiang, 2005: Reorganization of tropical climate during El Nino: A weak temperature gradient approach. J. Climate, 18 , 53125329.

    • Search Google Scholar
    • Export Citation
  • Nakajima, K., and Coauthors, 2004: Initial development of tropical precipitation in response to a local warm SST area: An aqua-planet ensemble study. J. Meteor. Soc. Japan, 82 , 14831504.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115 , 312.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and J-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: Analytical theory. J. Atmos. Sci., 51 , 18761894.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and N. Zeng, 2000: A quasi-equilibrium tropical circulation model—Formulation. J. Atmos. Sci., 57 , 17411766.

  • Neelin, J. D., and C. Chou, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17 , 26882701.

  • Neelin, J. D., and H. Su, 2005: Moist teleconnection mechanisms for the tropical South American and Atlantic sector. J. Climate, 18 , 39283950.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., C. Chou, and H. Su, 2003: Tropical drought regions in global warming and El Nino teleconnections. Geophys. Res. Lett., 30 .2275, doi:10.1029/2003GL018625.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., and P. Chang, 2000: Interactions between tropical Atlantic variability and El Niño–Southern Oscillation. J. Climate, 13 , 21772194.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58 , 36503665.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., I. M. Held, and C. S. Bretherton, 2002: The ENSO signal in tropical tropospheric temperature. J. Climate, 15 , 27022706.

    • Search Google Scholar
    • Export Citation
  • Su, H., and J. D. Neelin, 2002: Teleconnection mechanisms for tropical Pacific descent anomalies during El Niño. J. Atmos. Sci., 59 , 26942712.

    • Search Google Scholar
    • Export Citation
  • Su, H., J. D. Neelin, and C. Chou, 2001: Tropical teleconnection and local response to SST anomalies during the 1997-1998 El Niño. J. Geophys. Res., 106 , 2002520043.

    • Search Google Scholar
    • Export Citation
  • Su, H., J. D. Neelin, and J. E. Meyerson, 2003: Sensitivity of tropical tropospheric temperature to sea surface temperature forcing. J. Climate, 16 , 12831301.

    • Search Google Scholar
    • Export Citation
  • Su, H., J. D. Neelin, and J. E. Meyerson, 2005: Mechanisms for lagged atmospheric response to ENSO forcing. J. Climate, 18 , 41954215.

    • Search Google Scholar
    • Export Citation
  • Sun, D-Z., and A. H. Oort, 1995: Humidity–temperature relationships in the tropical troposphere. J. Climate, 8 , 19741987.

  • Tang, B. H., and J. D. Neelin, 2004: ENSO influence on Atlantic hurricanes via tropospheric warming. Geophys. Res. Lett., 31 .L24204, doi:10.1029/2004GL021072.

    • Search Google Scholar
    • Export Citation
  • Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in global temperature and precipitation fields derived from the Microwave Sounding Unit. J. Climate, 7 , 17191736.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., and J. D. Neelin, 1999: A land–atmosphere interaction theory for the tropical deforestation problem. J. Climate, 12 , 857872.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., and J. D. Neelin, 2000: The role of vegetation–climate interaction and interannual variability in shaping the African savanna. J. Climate, 13 , 26652670.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., J. D. Neelin, K. M. Lau, and C. J. Tucker, 1999: Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science, 286 , 15371540.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., J. D. Neelin, and C. Chou, 2000: A quasi-equilibrium tropical circulation model—Implementation and simulation. J. Atmos. Sci., 57 , 17671796.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 4 4 4

Adjustment of the Remote Tropical Climate to El Niño Conditions

View More View Less
  • 1 Department of Geography, and Berkeley Atmospheric Sciences Center, University of California, Berkeley, Berkeley, California
Restricted access

Abstract

The adjustment of the tropical climate outside the Pacific (the “remote Tropics”) to the abrupt onset of El Niño conditions is examined in a tropical atmosphere model that assumes simplified vertical structure and quasi-equilibrium (QE) convective closure. The El Niño signal is rapidly (∼1 week) communicated to the remote Tropics via an eastward-propagating Kelvin-like wave that induces both anomalous subsidence and tropospheric warming. Widespread reductions in convective precipitation occur in conjunction with the spreading of the temperature and subsidence anomalies. The remote rainfall suppression peaks roughly 5–15 days after the initiation of El Niño conditions, after which the anomalous remote rainfall field recovers to a state characterized by a smaller remote areal mean rainfall deficit and the appearance of localized positive rainfall anomalies. The initial remote precipitation reduction after El Niño onset is tied to both tropospheric warming (i.e., stabilization of the troposphere to deep convection) and the suppression of remote humidity levels; recovery of the initial deficits occurs as feedbacks modulate the subsequent evolution of humidity anomalies in the tropospheric column. Apart from the short-term response, there is a longer-term adjustment of the remote climate related to the thermal inertia of the underlying surface: surface thermal disequilibrium, which is related to the depth of the ocean mixed layer, maintains larger precipitation deficits than would be expected for equilibrated conditions. This result supports a previous prediction by one of the authors for a significant disequilibrium mechanism in the precipitation teleconnection to El Niño resulting from the local vertical coupling of the troposphere to the surface through moist convection.

* Current affiliation: Department of Atmospheric and Oceanic Sciences, and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Corresponding author address: Dr. Benjamin R. Lintner, Department of Atmospheric and Oceanic Sciences, and Institute of Geophysics and Planetary Physics, 7127 Mathematical Sciences Building, University of California, Los Angeles, Los Angeles, CA 90095-1565. Email: ben@atmos.ucla.edu

Abstract

The adjustment of the tropical climate outside the Pacific (the “remote Tropics”) to the abrupt onset of El Niño conditions is examined in a tropical atmosphere model that assumes simplified vertical structure and quasi-equilibrium (QE) convective closure. The El Niño signal is rapidly (∼1 week) communicated to the remote Tropics via an eastward-propagating Kelvin-like wave that induces both anomalous subsidence and tropospheric warming. Widespread reductions in convective precipitation occur in conjunction with the spreading of the temperature and subsidence anomalies. The remote rainfall suppression peaks roughly 5–15 days after the initiation of El Niño conditions, after which the anomalous remote rainfall field recovers to a state characterized by a smaller remote areal mean rainfall deficit and the appearance of localized positive rainfall anomalies. The initial remote precipitation reduction after El Niño onset is tied to both tropospheric warming (i.e., stabilization of the troposphere to deep convection) and the suppression of remote humidity levels; recovery of the initial deficits occurs as feedbacks modulate the subsequent evolution of humidity anomalies in the tropospheric column. Apart from the short-term response, there is a longer-term adjustment of the remote climate related to the thermal inertia of the underlying surface: surface thermal disequilibrium, which is related to the depth of the ocean mixed layer, maintains larger precipitation deficits than would be expected for equilibrated conditions. This result supports a previous prediction by one of the authors for a significant disequilibrium mechanism in the precipitation teleconnection to El Niño resulting from the local vertical coupling of the troposphere to the surface through moist convection.

* Current affiliation: Department of Atmospheric and Oceanic Sciences, and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Corresponding author address: Dr. Benjamin R. Lintner, Department of Atmospheric and Oceanic Sciences, and Institute of Geophysics and Planetary Physics, 7127 Mathematical Sciences Building, University of California, Los Angeles, Los Angeles, CA 90095-1565. Email: ben@atmos.ucla.edu

Save