• Boyer, T. P., S. Levitus, J. I. Antonov, M. E. Conkright, T. O’Brien, and C. Stephens, 1998a: Salinity of the Atlantic Ocean. Vol. 4, World Ocean Atlas 1998, NOAA Atlas NESDIS 30, 166 pp.

  • Boyer, T. P., S. Levitus, J. I. Antonov, M. E. Conkright, T. O’Brien, and C. Stephens, 1998b: Salinity of the Pacific Ocean. Vol. 5, World Ocean Atlas 1998, NOAA Atlas NESDIS 30, 166 pp.

  • Boyer, T. P., S. Levitus, J. I. Antonov, M. E. Conkright, T. O’Brien, C. Stephens, and B. Trotsenko, 1998c: Salinity of the Indian Ocean. Vol. 6, World Ocean Atlas 1998, NOAA Atlas NESDIS 30, 166 pp.

  • Cessi, P. R., G. Ierley, and W. R. Young, 1987: A model of inertial recirculation driven by potential vorticity anomalies. J. Phys. Oceanogr., 17 , 16401652.

    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, and M. S. Timlin, 1999: Evidence for a wind-driven intensification of the Kuroshio Current Extension from the 1970s to the 1980s. J. Climate, 12 , 16971706.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., 2003: Nonlinear midlatitude ocean adjustment. J. Phys. Oceanogr., 33 , 10571082.

  • Dijkstra, H. A., and M. Ghil, 2005: Low-frequency variability of the ocean circulation: A dynamical systems approach. Rev. Geophys., 43 .RG3002, doi:10.1029/2002RG000122.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P-Y. LeTraon, and G. Reverdin, 2000: Global high resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1/2. J. Geophys. Res., 105 , 1947719498.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., and D. J. Lorenz, 2005: Characterizing midlatitude jet variability: Lessons from a simple GCM. J. Climate, 18 , 34003404.

    • Search Google Scholar
    • Export Citation
  • Hogg, A. M., P. D. Killworth, J. R. Blundell, and W. K. Dewar, 2005: Mechanisms of decadal variability of the wind-driven ocean circulation. J. Phys. Oceanogr., 35 , 512531.

    • Search Google Scholar
    • Export Citation
  • Inatsu, M., H. Mukougawa, and S-P. Xie, 2003: Atmospheric response to zonal variations in midlatitude SST: Transient and stationary eddies and their feedback. J. Climate, 16 , 33143329.

    • Search Google Scholar
    • Export Citation
  • Jiang, S., F-F. Jin, and M. Ghil, 1995: Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, double-gyre, shallow-water model. J. Phys. Oceanogr., 25 , 764786.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266 , 634637.

    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and Coauthors, 2004: A fifty-year eddy-resolving simulation of the World Ocean—Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simul., 1 , 3152.

    • Search Google Scholar
    • Export Citation
  • McCalpin, J., and D. B. Haidvogel, 1996: Phenomenology of the low-frequency variability in a reduced-gravity, quasigeostrophic double-gyre model. J. Phys. Oceanogr., 26 , 739752.

    • Search Google Scholar
    • Export Citation
  • Miller, A., D. Cayan, T. P. Barnett, N. E. Graham, and J. M. Oberhuber, 1994: Interdecadal variability of the Pacific Ocean: Model response to observed heat flux and wind stress anomalies. Climate Dyn., 9 , 287302.

    • Search Google Scholar
    • Export Citation
  • Miller, A., D. Cayan, and W. White, 1998: A westward-intensified decadal change in the North Pacific thermocline and gyre-scale circulation. J. Climate, 11 , 31123127.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams, and midlatitude oceanic fronts. Earth Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–345.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., N. A. Maximenko, and J. C. McWilliams, 2003: Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations. Geophys. Res. Lett., 30 .2164, doi:10.1029/2003GL018628.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., and S. Yamada, 1989: Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J. Meteor. Soc. Japan, 67 , 375383.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., and S-P. Xie, 2003: Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean-to-atmospheric feedback. J. Climate, 16 , 14041413.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, 2006: Decadal variability in the Kuroshio–Oyashio Extension simulated in an eddy-resolving OGCM. J. Climate, 19 , 19701989.

    • Search Google Scholar
    • Export Citation
  • Noto, M., and I. Yasuda, 2003: Empirical biomass model for the Japanese sardine, Sardinops melanostictus, with sea surface temperature in the Kuroshio Extension. Fish. Oceanogr., 12 , 19.

    • Search Google Scholar
    • Export Citation
  • Ohfuchi, W., and Coauthors, 2004: 10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulator—Preliminary outcomes of AFES (AGCM for the Earth Simulator). J. Earth Simul., 1 , 834.

    • Search Google Scholar
    • Export Citation
  • Ohfuchi, W., H. Sasaki, Y. Masumoto, and H. Nakamura, 2005: Meso-scale resolving simulations of the global atmosphere and ocean on the Earth simulator. Eos, Trans. Amer. Geophys. Union, 86 , 4546.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1999: MOM 3.0 manual. Tech. Rep. 4, NOAA/Geophysical Fluid Dynamics Laboratory, 680 pp.

  • Pierce, D. W., T. P. Barnett, N. Schneider, R. Saravanan, D. Dommenget, and M. Latif, 2001: The role of ocean dynamics in producing decadal climate variability in the North Pacific. Climate Dyn., 18 , 5170.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2000: Interannual variability of the Kuroshio Extension system and its impact on the wintertime SST field. J. Phys. Oceanogr., 30 , 14861502.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2002a: The Kuroshio extension system: Its large-scale variability and role in the midlatitude ocean-atmosphere interaction. J. Oceanogr., 58 , 5775.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2002b: Large-scale variability in the midlatitude subtropical and subpolar North Pacific Ocean: Observations and causes. J. Phys. Oceanogr., 32 , 353375.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2003: Kuroshio Extension variability and forcing of the Pacific decadal oscillations: Responses and potential feedback. J. Phys. Oceanogr., 33 , 24652482.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension Jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35 , 20902103.

    • Search Google Scholar
    • Export Citation
  • Qu, T., S-P. Xie, H. Mitsudera, and A. Ishida, 2002: Subduction of the North Pacific mode waters in a global eddy-resolving GCM. J. Phys. Oceanogr., 32 , 746763.

    • Search Google Scholar
    • Export Citation
  • Sakamoto, T. T., H. Hasumi, M. Ishii, S. Emori, T. Suzuki, T. Nishimura, and A. Sumi, 2005: Responses of the Kuroshio and the Kuroshio Extension to global warming in a high-resolution climate model. Geophys. Res. Lett., 32 .L14617, doi:10.1029/2005GL023384.

    • Search Google Scholar
    • Export Citation
  • Sasai, Y., A. Ishida, Y. Yamanaka, and H. Sasaki, 2004: Chlorofluorocarbons in a global ocean eddy-resolving OGCM: Pathway and formation of Antarctic Bottom Water. Geophys. Res. Lett., 31 .L12305, doi:10.1029/2004GL019895.

    • Search Google Scholar
    • Export Citation
  • Sasai, Y., A. Ishida, H. Sasaki, S. Kawahara, H. Uehara, and Y. Yamanaka, 2005: A global eddy-resolving coupled physical-biological model: Physical influences on a marine ecosystem in the North Pacific. Open International Conference on Modeling and Simulation—OICMS 2005, D. R. C. Hill, V. Barra, and M. K. Troer, Eds., Blaise Pascal University, 129–138.

  • Sasaki, H., and M. Nonaka, 2006: Far-reaching Hawaiian Lee Countercurrent driven by wind-stress curl induced by warm SST band along the current. Geophys. Res. Lett., 33 .L13602, doi:10.1029/2006GL026540.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., and A. Miller, 2001: Predicting western North Pacific Ocean climate. J. Climate, 14 , 39974002.

  • Schneider, N., and B. D. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18 , 43554373.

  • Schneider, N., A. J. Miller, and D. W. Pierce, 2002: Anatomy of North Pacific decadal variability. J. Climate, 15 , 586605.

  • Scott, R. B., and B. Qiu, 2003: Predictability of SST in a stochastic climate model and its application to the Kuroshio Extension region. J. Climate, 16 , 312322.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, N. H. Naik, M. A. Cane, and J. Miller, 2001: Wind driven shifts in the latitude of the Kuroshion Oyashio Extension and generation of SST anomalies on decadal timescales. J. Climate, 14 , 42494265.

    • Search Google Scholar
    • Export Citation
  • Taguchi, B., 2006: A modeling study of the Kuroshio Extension: Decadal variability and influence on the atmosphere. Ph.D. thesis, University of Hawaii at Manoa, 97 pp.

  • Taguchi, B., S-P. Xie, H. Mitsudera, and A. Kubokawa, 2005: Response of the Kuroshio Extension to Rossby waves associated with the 1970s climate regime shift in a high-resolution ocean model. J. Climate, 18 , 29792995.

    • Search Google Scholar
    • Export Citation
  • Tanimoto, Y., H. Nakamura, T. Kagimoto, and S. Yamane, 2003: An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux. J. Geophys. Res., 108 .3304, doi:10.1029/2002JC00175.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., and Coauthors, 2006: Atmospheric sounding over the winter Kuroshio Extension: Effect of surface stability on atmospheric boundary layer structure. Geophys. Res. Lett., 33 .L04703, doi:10.1029/2005GL025102.

    • Search Google Scholar
    • Export Citation
  • Tomita, T., S-P. Xie, and M. Nonaka, 2002: Estimates of surface and subsurface forcing for decadal sea surface temperature variability in the mid-latitude North Pacific. J. Meteor. Soc. Japan, 80 , 12891300.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9 , 303319.

  • White, W. B., 1995: Design of a global observing system for gyre-scale upper ocean temperature variability. Progress in Oceanography, Vol. 36, Pergamon Press, 169–217.

  • Xie, S-P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85 , 195208.

  • Xie, S-P., T. Kunitani, A. Kubokawa, M. Nonaka, and S. Hosoda, 2000: Interdecadal thermocline variability in the North Pacific for 1958–97: A GCM simulation. J. Phys. Oceanogr., 30 , 27982813.

    • Search Google Scholar
    • Export Citation
  • Yasuda, T., and K. Sakurai, 2006: Interdecadal variability of the sea surface height around Japan. Geophys. Res. Lett., 33 .L01605, doi:10.1029/2005GL02490.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 20
PDF Downloads 17 17 17

Decadal Variability of the Kuroshio Extension: Observations and an Eddy-Resolving Model Hindcast

View More View Less
  • + Department of Meteorology, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii
  • | # IPRC, and Department of Meteorology, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii
  • | @ IPRC, and Department of Oceanography, SOEST, University of Hawaii at Manoa, Honolulu, Hawaii
  • | & Frontier Research Center for Global Change, JAMSTEC, Yokohama, Japan
  • | ** Earth Simulator Center, JAMSTEC, Yokohama, Japan
Restricted access

Abstract

Low-frequency variability of the Kuroshio Extension (KE) is studied using observations and a multidecadal (1950–2003) hindcast by a high-resolution (0.1°), eddy-resolving, global ocean general circulation model for the Earth Simulator (OFES). In both the OFES hindcast and satellite altimeter observations, low-frequency sea surface height (SSH) variability in the North Pacific is high near the KE front. An empirical orthogonal function (EOF) analysis indicates that much of the SSH variability in the western North Pacific east of Japan is explained by two modes with meridional structures tightly trapped along the KE front. The first mode represents a southward shift and to a lesser degree, an acceleration of the KE jet associated with the 1976/77 shift in basin-scale winds. The second mode reflects quasi-decadal variations in the intensity of the KE jet. Both the spatial structure and time series of these modes derived from the hindcast are in close agreement with observations.

A linear Rossby wave model forced by observed wind successfully reproduces the time series of the leading OFES modes but fails to explain why their meridional structure is concentrated on the KE front and inconsistent with the broadscale wind forcing. Further analysis suggests that KE variability may be decomposed into broad- and frontal-scale components in the meridional direction—the former following the linear Rossby wave solution and the latter closely resembling ocean intrinsic modes derived from an OFES run forced by climatological winds. The following scenario is suggested for low-frequency KE variability: basin-scale wind variability excites broadscale Rossby waves, which propagate westward, triggering intrinsic modes of the KE jet and reorganizing SSH variability in space.

* International Pacific Research Center Publication Number 432 and School for Ocean and Earth Science and Technology Publication Number 7099

## Current affliation: Earth Simulator Center, JAMSTEC, Yokohama, Japan

Corresponding author address: Dr. Bunmei Taguchi, Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. Email: bunmei@jamstec.go.jp

Abstract

Low-frequency variability of the Kuroshio Extension (KE) is studied using observations and a multidecadal (1950–2003) hindcast by a high-resolution (0.1°), eddy-resolving, global ocean general circulation model for the Earth Simulator (OFES). In both the OFES hindcast and satellite altimeter observations, low-frequency sea surface height (SSH) variability in the North Pacific is high near the KE front. An empirical orthogonal function (EOF) analysis indicates that much of the SSH variability in the western North Pacific east of Japan is explained by two modes with meridional structures tightly trapped along the KE front. The first mode represents a southward shift and to a lesser degree, an acceleration of the KE jet associated with the 1976/77 shift in basin-scale winds. The second mode reflects quasi-decadal variations in the intensity of the KE jet. Both the spatial structure and time series of these modes derived from the hindcast are in close agreement with observations.

A linear Rossby wave model forced by observed wind successfully reproduces the time series of the leading OFES modes but fails to explain why their meridional structure is concentrated on the KE front and inconsistent with the broadscale wind forcing. Further analysis suggests that KE variability may be decomposed into broad- and frontal-scale components in the meridional direction—the former following the linear Rossby wave solution and the latter closely resembling ocean intrinsic modes derived from an OFES run forced by climatological winds. The following scenario is suggested for low-frequency KE variability: basin-scale wind variability excites broadscale Rossby waves, which propagate westward, triggering intrinsic modes of the KE jet and reorganizing SSH variability in space.

* International Pacific Research Center Publication Number 432 and School for Ocean and Earth Science and Technology Publication Number 7099

## Current affliation: Earth Simulator Center, JAMSTEC, Yokohama, Japan

Corresponding author address: Dr. Bunmei Taguchi, Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan. Email: bunmei@jamstec.go.jp

Supplementary Materials

    • Supplemental Materials (DOC 1.24 MB)
Save