• AchtuaRao, K., and K. R. Sperber, 2002: Simulation of the El Niño–Southern Oscillation: Results from the Coupled Model Intercomparison Project. Climate Dyn., 19 , 191209.

    • Search Google Scholar
    • Export Citation
  • AchutaRao, K., and K. R. Sperber, 2006: ENSO simulation in coupled ocean-atmosphere models: Are the current models better? Climate Dyn., 27 , 115.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., C. Deser, and M. S. Timlin, 1999: The reemergence of SST anomalies in the North Pacific Ocean. J. Climate, 12 , 24192431.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15 , 22052231.

    • Search Google Scholar
    • Export Citation
  • An, S-I., and B. Wang, 2005: The forced and intrinsic low-frequency modes in the North Pacific. J. Climate, 18 , 876885.

  • Barnett, T. P., D. W. Pierce, M. Latif, D. Dommenget, and R. Saravanan, 1999: Interdecadal interactions between the Tropics and midlatitudes in the Pacific basin. Geophys. Res. Lett., 26 , 615618.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean coupling on midlatitude variability. J. Atmos. Sci., 55 , 477493.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and P. D. Sardeshmukh, 2002: Global atmospheric sensitivity to tropical SST anomalies throughout the Indo–Pacific Basin. J. Climate, 15 , 34273442.

    • Search Google Scholar
    • Export Citation
  • Benson, A. J., and A. W. Trites, 2002: Ecological effects of regime shifts in the Bering Sea and eastern North Pacific Ocean. Fish Fish., 3 , 95113.

    • Search Google Scholar
    • Export Citation
  • Beran, J., 1994: Statistics for Long-Memory Processes. Chapman and Hall, 315 pp.

  • Biondi, F., A. Gershunov, and D. R. Cayan, 2001: North Pacific decadal climate variability since 1661. J. Climate, 14 , 510.

  • Bond, N. A., J. E. Overland, M. Spillane, and P. Stabeno, 2003: Recent shifts in the state of the North Pacific. Geophys. Res. Lett., 30 .2183, doi:10.1029/2003GL018597.

    • Search Google Scholar
    • Export Citation
  • Chang, P., R. Saravanan, T. DelSole, and F. Wang, 2004: Predictability of linear coupled systems. Part I: Theoretical analyses. J. Climate, 17 , 14741486.

    • Search Google Scholar
    • Export Citation
  • D’Arrigo, R., R. Villalba, and G. Wiles, 2001: Tree-ring estimates of Pacific decadal climate variability. Climate Dyn., 18 , 219224.

    • Search Google Scholar
    • Export Citation
  • D’Arrigo, R., and Coauthors, 2005: Tropical–North Pacific climate linkages over the past four centuries. J. Climate, 18 , 52535265.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., and A. Y. Hou, 1999: Empirical stochastic models for the dominant climate statistics of a general circulation model. J. Atmos. Sci., 56 , 34363456.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. L. Blackmon, 1995: On the relationship between tropical and North Pacific sea surface temperatures. J. Climate, 8 , 16771680.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the Tropics and the North Pacific during boreal winter since 1900. J. Climate, 17 , 31093124.

    • Search Google Scholar
    • Export Citation
  • Evans, M. N., M. A. Cane, D. P. Schrag, A. Kaplan, B. K. Linsley, R. Villalba, and G. M. Wellington, 2001: Support for tropically-driven Pacific decadal variability based on paleoproxy evidence. Geophys. Res. Lett., 28 , 36893692.

    • Search Google Scholar
    • Export Citation
  • Farrell, B., 1988: Optimal excitation of neutral Rossby waves. J. Atmos. Sci., 45 , 163172.

  • Folland, C. K., and D. E. Parker, 1995: Correction of instrumental biases in historical sea surface temperature data. Quart. J. Roy. Meteor. Soc., 121 , 319367.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., U. Luksch, and R. Blender, 2004: 1/f model for long-time memory of the ocean surface temperature. Phys. Rev. E, 70 .doi:10.1103/PhysRevE.70.037301.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29 , 284305.

    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., P. Müller, and E. Zorita, 1997: A simple model of the decadal response of the ocean to stochastic wind forcing. J. Phys. Oceanogr., 27 , 15331546.

    • Search Google Scholar
    • Export Citation
  • Gedalof, Z., N. J. Mantua, and D. L. Peterson, 2002: A multi-century perspective of variability in the Pacific decadal oscillation: New insights from tree rings and coral. Geophys. Res. Lett., 29 .2204, doi:10.1029/2002GL015824.

    • Search Google Scholar
    • Export Citation
  • Grotzner, A., M. Latif, A. Timmermann, and R. Voss, 1999: Interannual to decadal predictability in a coupled ocean–atmosphere general circulation model. J. Climate, 12 , 26072624.

    • Search Google Scholar
    • Export Citation
  • Gu, D., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchange between the tropics and extratropics. Science, 275 , 805807.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and R. Reynolds, 1996: Global surface air temperature in 1995: Return to pre-Pinatubo level. Geophys. Res. Lett., 23 , 16651668.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, J. Glascoe, and M. Sato, 1999: GISS analysis of surface temperature change. J. Geophys. Res., 104 , 3099731022.

  • Hansen, J., R. Ruedy, M. Sato, M. Imhoff, W. Lawrence, D. Easterling, T. Peterson, and T. Karl, 2001: A closer look at United States and global surface temperature change. J. Geophys. Res., 106 , 2394723963.

    • Search Google Scholar
    • Export Citation
  • Hare, S. R., and N. J. Mantua, 2000: Empirical evidence for North Pacific regime shifts in 1977 and 1989. Progress in Oceanography, Vol. 47, Pergamon Press, 103–146.

  • Hasselmann, K., 1976: Stochastic climate models. Part I. Theory. Tellus, 28 , 474485.

  • Hasselmann, K., 1988: PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns. J. Geophys. Res., 93 , 1101511021.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., C. Severijns, R. Seager, and F. Molteni, 2005: Tropical Pacific-driven decadal energy transport variability. J. Climate, 18 , 20372051.

    • Search Google Scholar
    • Export Citation
  • Huang, J., H. M. Van den Dool, and A. G. Barnston, 1994: Long-lead seasonal temperature prediction using optimal climate normals. J. Climate, 9 , 809817.

    • Search Google Scholar
    • Export Citation
  • Jin, F-F., 1997: A theory of interdecadal climate variability of the North Pacific ocean–atmosphere system. J. Climate, 10 , 18211835.

    • Search Google Scholar
    • Export Citation
  • Johnson, S. D., D. S. Battisti, and E. S. Sarachik, 2000: Empirically derived Markov models and prediction of tropical Pacific sea surface temperature anomalies. J. Climate, 13 , 317.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. Cane, Y. Kushnir, A. Clement, M. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103 , 1856718589.

    • Search Google Scholar
    • Export Citation
  • Karspeck, A., R. Seager, and M. A. Cane, 2004: Predictability of tropical Pacific decadal variability in an intermediate model. J. Climate, 17 , 28422850.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., and T. M. Smith, 1999: Covariability of aspects of North American climate with global sea surface temperatures on interannual to interdecadal timescales. J. Climate, 12 , 289302.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and J. M. Lees, 1996: Robust estimation of background noise and signal detection in climatic time series. Climatic Change, 33 , 409445.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78 , 10691079.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., D. R. Cayan, T. P. Barnett, N. E. Graham, and J. M. Oberhuber, 1994: Interdecadal variability of the Pacific Ocean: Model response to observed heat flux and wind stress anomalies. Climate Dyn., 9 , 287302.

    • Search Google Scholar
    • Export Citation
  • Miller, A. J., F. Chai, S. Chiba, J. R. Moisan, and D. J. Neilson, 2004: Decadal-scale climate and ecosystem interactions in the North Pacific Ocean. J. Oceanogr., 60 , 163188.

    • Search Google Scholar
    • Export Citation
  • Milotti, E., 1995: Linear processes that produce 1/f or flicker noise. Phys. Rev. E, 51 , 30873103.

  • Minobe, S., 1999: Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophys. Res. Lett., 26 , 855858.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., G. Lin, and T. Yamagata, 1997: Decadal climate variability in the North Pacific in recent decades. Bull. Amer. Meteor. Soc., 78 , 22152226.

    • Search Google Scholar
    • Export Citation
  • Newman, M., M. A. Alexander, C. R. Winkler, J. D. Scott, and J. J. Barsugli, 2000: A linear diagnosis of the coupled extratropical ocean atmosphere system in the GFDL GCM. Atmos. Sci. Lett., 1 , 1425.

    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, C. R. Winkler, and J. S. Whitaker, 2003a: A study of subseasonal predictability. Mon. Wea. Rev., 131 , 17151732.

    • Search Google Scholar
    • Export Citation
  • Newman, M., G. P. Compo, and M. A. Alexander, 2003b: ENSO-forced variability of the Pacific decadal oscillation. J. Climate, 16 , 38533857.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., D. B. Percival, and H. O. Mofjeld, 2006: Regime shifts and red noise in the North Pacific. Deep-Sea Res. I, 53 , 582588.

    • Search Google Scholar
    • Export Citation
  • Papanicolaou, G., and W. Kohler, 1974: Asymptotic theory of mixing stochastic ordinary differential equations. Commun. Pure Appl. Math., 27 , 641668.

    • Search Google Scholar
    • Export Citation
  • Penland, C., 1989: Random forcing and forecasting using principal oscillation pattern analysis. Mon. Wea. Rev., 117 , 21652185.

  • Penland, C., 1996: A stochastic model of IndoPacific sea surface temperature anomalies. Physica D, 98 , 534558.

  • Penland, C., and M. Ghil, 1993: Forecasting Northern Hemisphere 700-mb geopotential heights using principal oscillation patterns. Mon. Wea. Rev., 121 , 23552372.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosova, 1994: A balance condition for stochastic numerical models with application to the El Niño–Southern Oscillation. J. Climate, 7 , 13521372.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8 , 19992024.

  • Penland, C., and L. Matrosova, 2006: Studies of El Niño and interdecadal variability in tropical sea surface temperatures using a nonnormal filter. J. Climate, 19 , 57965815.

    • Search Google Scholar
    • Export Citation
  • Percival, D. B., J. E. Overland, and H. O. Mofjeld, 2001: Interpretation of North Pacific variability as a short- and long-memory process. J. Climate, 14 , 45454559.

    • Search Google Scholar
    • Export Citation
  • Pierce, D., 2001: Distinguishing coupled ocean–atmosphere interactions from background noise in the North Pacific. Progress in Oceanography, Vol. 49, Pergamon Press, 331–352.

  • Pohlmann, H., M. Botzet, M. Latif, A. Roesch, M. Wild, and P. Tschuck, 2004: Estimating decadal predictability of a coupled AOGCM. J. Climate, 17 , 44634472.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 1995: Why is the spreading of the North Pacific intermediate water confined on density surfaces around σθ=28.6? J. Phys. Oceanogr., 25 , 168180.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2000: Interannual variability of the Kuroshio extension system and its impact on the wintertime SST field. J. Phys. Oceanogr., 30 , 14861502.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and R. E. Davis, 2003: Red noise and regime shifts. Deep-Sea Res. I, 50 , 691699.

  • Saravanan, R., and J. C. McWilliams, 1998: Advective ocean–atmosphere interaction: An analytical stochastic model with implications for decadal variability. J. Climate, 11 , 165188.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2000: Changes in probability associated with El Niño. J. Climate, 13 , 42684286.

  • Schneider, N., and A. J. Miller, 2001: Predicting western North Pacific Ocean climate. J. Climate, 14 , 39974002.

  • Schneider, N., and B. D. Cornuelle, 2005: The forcing of the Pacific decadal oscillation. J. Climate, 18 , 43554373.

  • Schneider, N., A. J. Miller, M. Alexander, and C. Deser, 1999: Subduction of decadal North Pacific temperature anomalies: Observations and dynamics. J. Phys. Oceanogr., 29 , 10561070.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., A. J. Miller, and D. W. Pierce, 2002: Anatomy of North Pacific decadal variability. J. Climate, 15 , 586605.

  • Scott, R. B., 2003: Predictability of SST in an idealized, one-dimensional, coupled atmosphere–ocean climate model with stochastic forcing and advection. J. Climate, 16 , 323335.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and B. Qiu, 2003: Predictability of SST in a stochastic climate model and its application to the Kuroshio extension region. J. Climate, 16 , 312322.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, N. H. Naik, M. A. Cane, and J. Miller, 2001: Wind-driven shifts in the latitude of the Kuroshio–Oyashio extension and generation of SST anomalies on decadal timescales. J. Climate, 14 , 42494265.

    • Search Google Scholar
    • Export Citation
  • Seager, R., A. R. Karspeck, M. A. Cane, Y. Kushnir, A. Giannini, A. Kaplan, B. Kerman, and J. Velez, 2004: Predicting Pacific decadal variability. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 105–120.

  • Solomon, A., J. P. McCreary, R. Kleeman, and B. A. Klinger, 2003: Interannnual and decadal variability in an intermediate coupled model of the Pacific region. J. Climate, 16 , 383405.

    • Search Google Scholar
    • Export Citation
  • Strang, G., 1988: Linear Algebra and Its Applications. Academic Press, 520 pp.

  • Sura, P., M. Newman, C. Penland, and P. D. Sardeshmukh, 2005: Multiplicative noise and non-Gaussianity: A paradigm for atmospheric regimes? J. Atmos. Sci., 62 , 13911409.

    • Search Google Scholar
    • Export Citation
  • Sura, P., M. Newman, and M. A. Alexander, 2006: Daily to decadal sea surface temperature variability driven by state-dependent stochastic heat fluxes. J. Phys. Oceanogr., 36 , 19401958.

    • Search Google Scholar
    • Export Citation
  • Thomson, D. J., 1982: Spectrum estimation and harmonic analysis. Proc. IEEE, 70 , 10551096.

  • Timmermann, A., and F. Jin, 2002: A nonlinear mechanism for decadal El Niño amplitude changes. Geophys. Res. Lett., 29 , 10031006.

  • Tourre, Y. M., Y. Kushnir, and W. B. White, 1999: Evolution of interdecadal variability in sea level pressure, sea surface temperature, and upper ocean temperature over the Pacific Ocean. J. Phys. Oceanogr., 29 , 15281541.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., and J. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9 , 303319.

  • Tudhope, A. W., and Coauthors, 2001: Variability in the El Niño–Southern Oscillation through a glacial-interglacial cycle. Science, 291 , 15111517.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., M. A. Cane, and S. E. Zebiak, 1995: Irregularity and locking to the seasonal cycle in an ENSO prediction model as explained by the quasiperiodicity rout to chaos. J. Atmos. Sci., 52 , 293306.

    • Search Google Scholar
    • Export Citation
  • Venzke, S., M. Munnich, and M. Latif, 2000: On the predictability of decadal changes in the North Pacific. Climate Dyn., 16 , 379392.

  • Vimont, D. J., 2005: The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J. Climate, 18 , 20802092.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the Tropics and mid-latitudes. Geophys. Res. Lett., 28 , 39233936.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16 , 26682675.

    • Search Google Scholar
    • Export Citation
  • Weng, W., and J. D. Neelin, 1999: Analytical prototypes for ocean–atmosphere interaction at midlatitudes. Part I: Coupled feedbacks as multiplicative noise stochastic forcing. J. Climate, 12 , 697721.

    • Search Google Scholar
    • Export Citation
  • Winkler, C. R., M. Newman, and P. D. Sardeshmukh, 2001: A linear model of wintertime low-frequency variability. Part I: Formulation and forecast skill. J. Climate, 14 , 44744494.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., T. Kunitani, A. Kubokawa, M. Nonaka, and S. Hosoda, 2000: Interdecadal thermocline variability in the North Pacific for 1958–97: A GCM simulation. J. Phys. Oceanogr., 30 , 27982813.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability. J. Climate, 10 , 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 21 21 21
PDF Downloads 9 9 9

Interannual to Decadal Predictability of Tropical and North Pacific Sea Surface Temperatures

View More View Less
  • 1 CIRES Climate Diagnostics Center, University of Colorado, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado
Restricted access

Abstract

A multivariate empirical model is used to show that predictability of the dominant patterns of tropical and North Pacific oceanic variability, El Niño–Southern Oscillation (ENSO), and the Pacific decadal oscillation (PDO), is mostly limited to little more than a year, despite the presence of spectral peaks on decadal time scales. The model used is a linear inverse model (LIM) derived from the observed simultaneous and 1-yr lag correlation statistics of July–June-averaged SST from the Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST) dataset for the years 1900–2002. The model accurately reproduces the power spectra of the data, including interannual and interdecadal spectral peaks that are significant relative to univariate red noise. Eigenanalysis of the linear dynamical operator yields propagating eigenmodes that correspond to these peaks but have very short decay times and, thus, limited predictability.

Longer-term predictability does exist, however, due to two stationary eigenmodes that are more weakly damped. These eigenmodes do not strongly correspond to the canonical ENSO and PDO patterns. Instead, one is similar to the 1900–2002 trend and might represent anthropogenic effects, while the second represents multidecadal fluctuations of a pattern that potentially represents natural decadal variability; however, neither attribution can be made unambiguously with the analysis presented in this paper. Predictability of these two stationary eigenmodes is significantly enhanced by tropical–North Pacific coupling. Neither stationary eigenmode is well captured in the control run of any coupled GCM in the CMIP-3 project of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), perhaps because in all of the GCMs tropical SST decadal variability is too weak and North Pacific SSTs are too independent of the Tropics.

A key implication of this analysis is that the PDO may represent not a single physical mode but rather the sum of several phenomena, each of which represents a different red noise with its own autocorrelation time scale and spatial pattern. The sum of these red noises can give rise to apparent PDO “regime shifts” and seeming characteristics of a long memory process. Such shifts are not predictable beyond the time scale of the most rapidly decorrelating noise, less than two years, although the expected duration of regimes may be determined from the relative amplitudes of different eigenmodes.

Corresponding author address: Dr. Matthew Newman, Physical Sciences Division, NOAA/Earth System Research Laboratory, 325 Broadway, R/PSD1, Boulder, CO 80305-3328. Email: matt.newman@noaa.gov

Abstract

A multivariate empirical model is used to show that predictability of the dominant patterns of tropical and North Pacific oceanic variability, El Niño–Southern Oscillation (ENSO), and the Pacific decadal oscillation (PDO), is mostly limited to little more than a year, despite the presence of spectral peaks on decadal time scales. The model used is a linear inverse model (LIM) derived from the observed simultaneous and 1-yr lag correlation statistics of July–June-averaged SST from the Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST) dataset for the years 1900–2002. The model accurately reproduces the power spectra of the data, including interannual and interdecadal spectral peaks that are significant relative to univariate red noise. Eigenanalysis of the linear dynamical operator yields propagating eigenmodes that correspond to these peaks but have very short decay times and, thus, limited predictability.

Longer-term predictability does exist, however, due to two stationary eigenmodes that are more weakly damped. These eigenmodes do not strongly correspond to the canonical ENSO and PDO patterns. Instead, one is similar to the 1900–2002 trend and might represent anthropogenic effects, while the second represents multidecadal fluctuations of a pattern that potentially represents natural decadal variability; however, neither attribution can be made unambiguously with the analysis presented in this paper. Predictability of these two stationary eigenmodes is significantly enhanced by tropical–North Pacific coupling. Neither stationary eigenmode is well captured in the control run of any coupled GCM in the CMIP-3 project of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), perhaps because in all of the GCMs tropical SST decadal variability is too weak and North Pacific SSTs are too independent of the Tropics.

A key implication of this analysis is that the PDO may represent not a single physical mode but rather the sum of several phenomena, each of which represents a different red noise with its own autocorrelation time scale and spatial pattern. The sum of these red noises can give rise to apparent PDO “regime shifts” and seeming characteristics of a long memory process. Such shifts are not predictable beyond the time scale of the most rapidly decorrelating noise, less than two years, although the expected duration of regimes may be determined from the relative amplitudes of different eigenmodes.

Corresponding author address: Dr. Matthew Newman, Physical Sciences Division, NOAA/Earth System Research Laboratory, 325 Broadway, R/PSD1, Boulder, CO 80305-3328. Email: matt.newman@noaa.gov

Save