• Bryden, H. L., and E. C. Brady, 1989: Eddy momentum and heat fluxes and their effect on the circulation of the equatorial Pacific Ocean. J. Mar. Res., 47 , 5579.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14 , 14791498.

    • Search Google Scholar
    • Export Citation
  • Cox, M. D., 1980: Generation and propagation of 30-day waves in a numerical model of the Pacific. J. Phys. Oceanogr., 10 , 11681186.

  • Cox, M. D., 1984: A primitive equation, 3-dimensional model of the ocean. GFDL Ocean Group Tech. Rep. 1, 143 pp.

  • Cromwell, T., 1953: Circulation in the meridional plane in the central equatorial Pacific. J. Mar. Res., 12 , 196213.

  • Deser, C., S. Wahl, and J. J. Bates, 1993: The influence of sea surface temperature gradients on stratiform cloudiness along the equatorial front in the Pacific Ocean. J. Climate, 6 , 11721180.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., and C. S. Bretherton, 2004: Quasi-Lagrangian large eddy simulations of cross-equatorial flow in the east Pacific atmospheric boundary layer. J. Atmos. Sci., 61 , 18371858.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., C. S. Bretherton, N. A. Bond, M. F. Cronin, and B. M. Morley, 2005: EPIC 95°W observations of the eastern Pacific atmospheric boundary layer from the cold tongue to the ITCZ. J. Atmos. Sci., 62 , 426442.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere-Atmosphere Transfer Scheme (BATS) version 1 as coupled to the NCAR Community Climate Model. NCAR Tech. Note TN-387+STR, 80 pp.

  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16 , 571591.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Hansen, D. V., and C. A. Paul, 1984: Genesis and effects of long waves in the equatorial Pacific. J. Geophys. Res., 89 , 1043110440.

  • Jochum, M., and R. Murtugudde, 2006: Temperature advection by tropical instability waves. J. Phys. Oceanogr., 36 , 592605.

  • Jochum, M., R. Murtugudde, R. Ferrari, and P. Malanotte-Rizzoli, 2005: The impact of horizontal resolution in the tropical heat budget in an Atlantic Ocean model. J. Climate, 18 , 841851.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., M. J. McPhaden, and E. Firing, 2001: Equatorial Pacific Ocean horizontal velocity, divergence, and upwelling. J. Phys. Oceanogr., 31 , 839849.

    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., L. M. Rothstein, and D. Chen, 1998: The annual cycle of SST in the eastern tropical Pacific, diagnosed in an ocean GCM. J. Climate, 11 , 777799.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82 , 247267.

    • Search Google Scholar
    • Export Citation
  • Legeckis, R., 1977: Long waves in the eastern equatorial Pacific Ocean: A view from a geostationary satellite. Science, 197 , 11791181.

    • Search Google Scholar
    • Export Citation
  • Levitus, S. E., 1982: Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp. and 17 microfiche.

  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44 , 24182436.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., and P. P. Niiler, 2005: Hybrid decade-mean global sea level with mesoscale resolution. Recent Advances in Marine Science and Technology, 2004, N. Saxena, Ed., PACON International, 55–59.

  • McCreary, J. P., 1985: Modeling equatorial ocean circulation. Annu. Rev. Fluid Mech., 17 , 359409.

  • Menkes, C. E. R., J. G. Vialard, S. C. Kennan, J-P. Boulanger, and G. V. Madec, 2006: A modeling study of the impact of tropical instability waves on the heat budget of the eastern equatorial Pacific. J. Phys. Oceanogr., 36 , 847865.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 1989: On the interpretation of the Gill model. J. Atmos. Sci., 46 , 24662468.

  • Niiler, P. P., N. A. Maximenko, and J. C. McWilliams, 2003: Dynamically balanced absolute sea level of the global ocean derived from near surface velocity observations. Geophys. Res. Lett., 30 .2164, doi:10.1029/2003GL018628.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 1998: Low cloud type over the ocean from surface observations. Part II: Geographical and seasonal variations. J. Climate, 11 , 383403.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., 1995: MOM 2 documentation: User’s guide and reference manual. Version 1.0, 232 pp.

  • Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11 , 14431451.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., and R. C. Pacanowski, 1981: The oceanic response to cross-equatorial winds (with application to coastal upwelling in low latitudes). Tellus, 33 , 201210.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Coauthors, 2004: EPIC2001 and the coupled ocean–atmosphere system of the tropical east Pacific. Bull. Amer. Meteor. Soc., 85 , 13411354.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15 , 16091625.

    • Search Google Scholar
    • Export Citation
  • Seager, R., S. E. Zebiak, and M. A. Cane, 1988: A model of the tropical Pacific sea surface temperature climatology. J. Geophys. Res., 93 , 12651280.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., S-P. Xie, Y. Wang, S. K. Esbensen, and D. Vickers, 2005: Numerical simulation of boundary layer structure and cross-equatorial flow in the eastern Pacific. J. Atmos. Sci., 62 , 18121830.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and C. M. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35 , 10861102.

  • Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2 , 14921499.

    • Search Google Scholar
    • Export Citation
  • Wang, W., and M. J. McPhaden, 1999: The surface-layer heat balance in the equatorial Pacific Ocean. Part I: Mean seasonal cycle. J. Phys. Oceanogr., 29 , 18121831.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., O. L. Sen, and B. Wang, 2003: A highly resolved regional climate model (IPRC-RegCM) and its simulation of the 1998 severe precipitation event over China. Part I: Model description and verification of simulation. J. Climate, 16 , 17211738.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and S-P. Xie, 2003: On the equatorial Pacific surface wind changes around 1977: NCEP–NCAR reanalysis versus COADS observations. J. Climate, 16 , 167173.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., 2004: The shape of continents, air-sea interaction, and the rising branch of the Hadley circulation. The Hadley Circulation: Present, Past and Future, H. R Diaz and R. S. Bradley, Eds., Kluwer Academic, 121–152.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., and M. Seki, 1997: Causes of the equatorial asymmetry in sea surface temperature over the eastern Pacific. Geophys. Res. Lett., 24 , 25812584.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., and Coauthors, 2007: A regional ocean–atmosphere model for eastern Pacific climate: Toward reducing tropical biases. J. Climate, 20 , 15041522.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., M. A. Brunke, M. Zhou, C. Fairall, N. A. Bond, and D. H. Lenschow, 2004: Marine atmospheric boundary layer height over the eastern Pacific: Data analysis and model evaluation. J. Climate, 17 , 41594170.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 0 0 0
PDF Downloads 0 0 0

What Maintains the SST Front North of the Eastern Pacific Equatorial Cold Tongue?

View More View Less
  • 1 International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii
  • | 2 Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
  • | 3 International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii
Restricted access

Abstract

A coupled ocean–atmosphere regional model suggests a mechanism for formation of a sharp sea surface temperature (SST) front north of the equator in the eastern Pacific Ocean in boreal summer and fall. Meridional convergence of Ekman transport at 5°N is forced by eastward turning of the southeasterly cross-equatorial wind, but the SST front forms considerably south of the maximum Ekman convergence. Geostrophic equatorward flow at 3°N in the lower half of the isothermally mixed layer enhances mixed layer convergence.

Cold water is upwelled on or south of the equator and is advected poleward by mean mixed layer flow and by eddies. The mixed layer current convergence in the north confines the cold advection, so the SST front stays close to the equator. Warm advection from the north and cold advection from the south strengthen the front. In the Southern Hemisphere, a continuous southwestward current advects cold water far from the upwelling core.

The cold tongue is warmed by the net surface flux, which is dominated by solar radiation. Evaporation and net surface cooling are at a maximum just north of the SST front where relatively cool dry air is advected northward over warm SST. The surface heat flux is decomposed into a response to SST alone, and an atmospheric feedback. The atmospheric feedback enhances cooling on the north side of the front by 178 W m−2, about half of which is due to enhanced evaporation from cold dry advection, while the other half is due to cloud radiative forcing.

* International Pacific Research Center Contribution Number 436 and School of Ocean Engineering Science and Technology Contribution Number 7056

Corresponding author address: S. P. de Szoeke, NOAA/ESRL/PSD3, 325 Broadway, Boulder, CO 80304. Email: Simon.deSzoeke@noaa.gov

Abstract

A coupled ocean–atmosphere regional model suggests a mechanism for formation of a sharp sea surface temperature (SST) front north of the equator in the eastern Pacific Ocean in boreal summer and fall. Meridional convergence of Ekman transport at 5°N is forced by eastward turning of the southeasterly cross-equatorial wind, but the SST front forms considerably south of the maximum Ekman convergence. Geostrophic equatorward flow at 3°N in the lower half of the isothermally mixed layer enhances mixed layer convergence.

Cold water is upwelled on or south of the equator and is advected poleward by mean mixed layer flow and by eddies. The mixed layer current convergence in the north confines the cold advection, so the SST front stays close to the equator. Warm advection from the north and cold advection from the south strengthen the front. In the Southern Hemisphere, a continuous southwestward current advects cold water far from the upwelling core.

The cold tongue is warmed by the net surface flux, which is dominated by solar radiation. Evaporation and net surface cooling are at a maximum just north of the SST front where relatively cool dry air is advected northward over warm SST. The surface heat flux is decomposed into a response to SST alone, and an atmospheric feedback. The atmospheric feedback enhances cooling on the north side of the front by 178 W m−2, about half of which is due to enhanced evaporation from cold dry advection, while the other half is due to cloud radiative forcing.

* International Pacific Research Center Contribution Number 436 and School of Ocean Engineering Science and Technology Contribution Number 7056

Corresponding author address: S. P. de Szoeke, NOAA/ESRL/PSD3, 325 Broadway, Boulder, CO 80304. Email: Simon.deSzoeke@noaa.gov

Save