• An, S. I., W. W. Hsieh, and F. F. Jin, 2005: A nonlinear analysis of the ENSO cycle and its interdecadal changes. J. Climate, 18 , 32293239.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. R., D. E. Stevens, and P. R. Julian, 1984: Temporal variations of the tropical 40–50 day oscillation. Mon. Wea. Rev., 112 , 24312438.

    • Search Google Scholar
    • Export Citation
  • Anyamba, E. K., and B. C. Weare, 1995: Temporal variability of the 40-50-day oscillation in tropical convection. Int. J. Climatol., 15 , 379402.

    • Search Google Scholar
    • Export Citation
  • Bantzer, C. H., and J. M. Wallace, 1996: Intraseasonal variability in tropical mean temperature and precipitation and their relation to the tropical 40–50-day oscillation. J. Atmos. Sci., 53 , 30323045.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the Tropics and the North Pacific during boreal winter since 1900. J. Climate, 17 , 31093124.

    • Search Google Scholar
    • Export Citation
  • Fink, A., and P. Speth, 1997: Some potential forcing mechanisms of the year-to-year variability of the tropical convection and its intraseasonal (25–70 day) variability. Int. J. Climatol., 17 , 15131534.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Studies of moisture effects in simple atmospheric models: The stable case. Geophys. Astrophys. Fluid Dyn., 19 , 119152.

    • Search Google Scholar
    • Export Citation
  • Goulet, L., and J-P. Duvel, 2000: A new approach to detect and characterize intermittent atmospheric oscillations: Application to the intraseasonal oscillations. J. Atmos. Sci., 57 , 23972416.

    • Search Google Scholar
    • Export Citation
  • Gray, B. M., 1988: Seasonal frequency variations in the 40–50 day oscillation. J. Climatol., 8 , 511519.

  • Hendon, H. H., and B. Liebmann, 1990a: A composite study of onset of the Australian summer monsoon. J. Atmos. Sci., 47 , 22272239.

  • Hendon, H. H., and B. Liebmann, 1990b: The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J. Atmos. Sci., 47 , 29092923.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., C. Zhang, and J. D. Glick, 1999: Interannual variation of the Madden–Julian oscillation during austral summer. J. Climate, 12 , 25382550.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., M. C. Wheeler, and C. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20 , 531543.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalyses Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83 , 16311643.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14 , 780793.

  • Kessler, W. S., 2001: EOF representation of the Madden–Julian oscillation and its connection with ENSO. J. Climate, 14 , 30553061.

  • Kinter, J. L., M. J. Fennessy, V. Krishnamurthy, and L. Marx, 2004: An evaluation of the apparent interdecadal shift in the tropical divergent circulation in the NCEP–NCAR reanalysis. J. Climate, 17 , 349361.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and K. M. Weickmann, 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115 , 14071436.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77 , 12751277.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122 , 814837.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78 , 10691079.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2000: Propagating mechanisms for the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 126 , 26372652.

  • Matthews, A. J., 2004: Intraseasonal variability over tropical Africa during northern summer. J. Climate, 17 , 24272440.

  • Pettitt, A. N., 1979: A nonparametric approach to the change-point problem. Appl. Stat., 28 , 126135.

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in the equatorial region. J. Atmos. Sci., 61 , 21052132.

  • Salby, M. L., and H. H. Hendon, 1994: Intraseasonal behavior of clouds, temperature, and motion in the Tropics. J. Atmos. Sci., 51 , 22072224.

    • Search Google Scholar
    • Export Citation
  • Slingo, J., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12 , 325357.

    • Search Google Scholar
    • Export Citation
  • Slingo, J., D. P. Rowell, K. R. Sperber, and F. Nortley, 1999: On the predictability of the interannual behaviour of the Madden–Julian Oscillation and its relationship with El Niño. Quart. J. Roy. Meteor. Soc., 125 , 583609.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, and J. W. Hurrell, 2001: Quality of reanalyses in the Tropics. J. Climate, 14 , 14991510.

  • Vincent, D. G., A. Fink, J. M. Schrage, and P. Speth, 1998: High- and low-frequency intraseasonal variance of OLR on annual and ENSO timescales. J. Climate, 11 , 968986.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 1995: Interdecadal changes in El Niño onset in the last four decades. J. Climate, 8 , 267285.

  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132 , 19171932.

    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Liu, R. Gallimore, R. Jacob, D. Lee, and Y. Zhong, 2003: Pacific decadal variability: The tropical Pacific mode and the North Pacific mode. J. Climate, 16 , 11011120.

    • Search Google Scholar
    • Export Citation
  • Wu, L., D. E. Lee, and Z. Liu, 2005: The 1976/77 North Pacific climate regime shift: The role of subtropical ocean adjustment and coupled ocean–atmosphere feedbacks. J. Climate, 18 , 51255140.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57 , 227242.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1980: A quasi-stationary appearance of the 30–40-day period in cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Japan, 58 , 223229.

    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1981: Structure of an Indian summer monsoon system with around 40-day period. J. Meteor. Soc. Japan, 59 , 336354.

  • Zhang, C., 2005: Madden–Julian Oscillation. Rev. Geophys., 43 .RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden–Julian oscillation in the equatorial Pacific. J. Climate, 15 , 24292445.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and M. Dong, 2004: Seasonality in the Madden–Julian oscillation. J. Climate, 17 , 31693180.

  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10 , 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17 17 17
PDF Downloads 5 5 5

Observed Changes in the Lifetime and Amplitude of the Madden–Julian Oscillation Associated with Interannual ENSO Sea Surface Temperature Anomalies

View More View Less
  • 1 Centre de Recherches de Climatologie, CNRS/Université de Bourgogne, Dijon, France
  • | 2 Schools of Environmental Sciences and Mathematics, University of East Anglia, Norwich, United Kingdom
Restricted access

Abstract

The Madden–Julian oscillation (MJO) is analyzed using the reanalysis zonal wind– and satellite outgoing longwave radiation–based indices of Wheeler and Hendon for the 1974–2005 period. The average lifetime of the MJO events varies with season (36 days for events whose central date occurs in December, and 48 days for events in September). The lifetime of the MJO in the equinoctial seasons (March–May and October–December) is also dependent on the state of El Niño–Southern Oscillation (ENSO). During October–December it is only 32 days under El Niño conditions, increasing to 48 days under La Niña conditions, with similar values in northern spring. This difference is due to faster eastward propagation of the MJO convective anomalies through the Maritime Continent and western Pacific during El Niño, consistent with theoretical arguments concerning equatorial wave speeds.

The analysis is extended back to 1950 by using an alternative definition of the MJO based on just the zonal wind component of the Wheeler and Hendon indices. A rupture in the amplitude of the MJO is found in 1975, which is at the same time as the well-known rupture in the ENSO time series that has been associated with the Pacific decadal oscillation. The mean amplitude of the MJO is 16% larger in the postrupture (1976–2005) compared to the prerupture (1950–75) period. Before the 1975 rupture, the amplitude of the MJO is maximum (minimum) under El Niño (La Niña) conditions during northern winter, and minimum (maximum) under El Niño (La Niña) conditions during northern summer. After the rupture, this relationship disappears. When the MJO–ENSO relationship is analyzed using all-year-round data, or a shorter dataset (as in some previous studies), no relationship is found.

Corresponding author address: Benjamin Pohl, Centre de Recherches de Climatologie, 6 Boulevard Gabriel, F-21000 Dijon, France. Email: benjamin.pohl@u-bourgogne.fr

Abstract

The Madden–Julian oscillation (MJO) is analyzed using the reanalysis zonal wind– and satellite outgoing longwave radiation–based indices of Wheeler and Hendon for the 1974–2005 period. The average lifetime of the MJO events varies with season (36 days for events whose central date occurs in December, and 48 days for events in September). The lifetime of the MJO in the equinoctial seasons (March–May and October–December) is also dependent on the state of El Niño–Southern Oscillation (ENSO). During October–December it is only 32 days under El Niño conditions, increasing to 48 days under La Niña conditions, with similar values in northern spring. This difference is due to faster eastward propagation of the MJO convective anomalies through the Maritime Continent and western Pacific during El Niño, consistent with theoretical arguments concerning equatorial wave speeds.

The analysis is extended back to 1950 by using an alternative definition of the MJO based on just the zonal wind component of the Wheeler and Hendon indices. A rupture in the amplitude of the MJO is found in 1975, which is at the same time as the well-known rupture in the ENSO time series that has been associated with the Pacific decadal oscillation. The mean amplitude of the MJO is 16% larger in the postrupture (1976–2005) compared to the prerupture (1950–75) period. Before the 1975 rupture, the amplitude of the MJO is maximum (minimum) under El Niño (La Niña) conditions during northern winter, and minimum (maximum) under El Niño (La Niña) conditions during northern summer. After the rupture, this relationship disappears. When the MJO–ENSO relationship is analyzed using all-year-round data, or a shorter dataset (as in some previous studies), no relationship is found.

Corresponding author address: Benjamin Pohl, Centre de Recherches de Climatologie, 6 Boulevard Gabriel, F-21000 Dijon, France. Email: benjamin.pohl@u-bourgogne.fr

Save