Abstract
The humidity in the dry regions of the tropical and subtropical troposphere has a major impact on the ability of the atmosphere to radiate heat to space. The water vapor content in these regions is determined by their “origins,” here defined as the last condensation event following air masses. Trajectory simulations are used to investigate such origins using the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) data for January 1993. It is shown that 96% of air parcels experience condensation within 24 days and most of the remaining 4% originate in the stratosphere. Dry air masses are shown to experience a net pressure increase since last condensation, which is uniform with latitude, while the median time taken for descent is 5 days into the subtropics but exceeds 16 days into the equatorial lower troposphere. The associated rate of decrease in potential temperature is consistent with radiative cooling. The relationship between the drier regions in the Tropics and subtropics and the geographical localization of their origin is investigated. Four transport processes are identified to explain these relationships.
Corresponding author address: John Methven, Dept. of Meteorology, University of Reading, P.O. Box 243, Earley Gate, Reading, RG6 6BB, United Kingdom. Email: j.methven@reading.ac.uk