Intraseasonal Convective Perturbations Related to the Seasonal March of the Indo-Pacific Monsoons

H. Bellenger Laboratoire de Météorologie Dynamique, ENS, Paris, France

Search for other papers by H. Bellenger in
Current site
Google Scholar
PubMed
Close
and
J. P. Duvel Laboratoire de Météorologie Dynamique, ENS, Paris, France

Search for other papers by J. P. Duvel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The seasonal evolution of the 20–90-day intraseasonal variability (ISV) of the convection in the Indo-Pacific region presents intriguing features related to monsoon dynamics: (i) a sharp ISV maximum in May for the southern Bay of Bengal and in June for the eastern Arabian Sea, (ii) a maximum ISV over the west Pacific in July–September when the ISV over the northern Indian Ocean is weaker, (iii) a persistent ISV north of Australia from December to March, and (iv) a weak ISV over continental regions. The source of these behaviors is investigated from time series of satellite observations, meteorological reanalysis, and from an ocean mixed layer depth (MLD) climatology. For the northern Indian Ocean, sharp ISV maxima in May and June, when the MLD is still small (∼20–30 m), are related to an abrupt surface cooling associated with the setting of the monsoon low-level jet. The ISV of the convection is smaller over these regions during July–September when the MLD is deepened (∼60–70 m) by the monsoon low-level wind forcing. At this time, the low-level wind is weak over the west Pacific, the MLD is small, and the amplitude of the ISV remains large. North of Australia, and also over the south equatorial Indian Ocean, there is no particular reinforcement of the ISV near the onset. A weak low-level jet and a small MLD prevail during the whole monsoon season in good agreement with a more uniform ISV. These results support the hypothesis that a moderately shallow (∼20–30 m) ocean mixed layer is important for maintaining locally the ISV of the convection, when the conditions (e.g., SST, large-scale circulation) for such an ISV to exist are satisfied. The seasonal variability of the MLD, related in part to the monsoon low-level jet variability over the tropical oceans, thus gives a link between the seasonal march of monsoon circulations and the seasonal evolution of the ISV of the convection. This has implications for a better understanding of the origin of the ISV and for the predictability of its amplitude, especially near the monsoon onset date.

Corresponding author address: Dr. Jean-Philippe Duvel, Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure, 24 rue Lhomond, F-75231 Paris CEDEX 05, France. Email: jpduvel@lmd.ens.fr

Abstract

The seasonal evolution of the 20–90-day intraseasonal variability (ISV) of the convection in the Indo-Pacific region presents intriguing features related to monsoon dynamics: (i) a sharp ISV maximum in May for the southern Bay of Bengal and in June for the eastern Arabian Sea, (ii) a maximum ISV over the west Pacific in July–September when the ISV over the northern Indian Ocean is weaker, (iii) a persistent ISV north of Australia from December to March, and (iv) a weak ISV over continental regions. The source of these behaviors is investigated from time series of satellite observations, meteorological reanalysis, and from an ocean mixed layer depth (MLD) climatology. For the northern Indian Ocean, sharp ISV maxima in May and June, when the MLD is still small (∼20–30 m), are related to an abrupt surface cooling associated with the setting of the monsoon low-level jet. The ISV of the convection is smaller over these regions during July–September when the MLD is deepened (∼60–70 m) by the monsoon low-level wind forcing. At this time, the low-level wind is weak over the west Pacific, the MLD is small, and the amplitude of the ISV remains large. North of Australia, and also over the south equatorial Indian Ocean, there is no particular reinforcement of the ISV near the onset. A weak low-level jet and a small MLD prevail during the whole monsoon season in good agreement with a more uniform ISV. These results support the hypothesis that a moderately shallow (∼20–30 m) ocean mixed layer is important for maintaining locally the ISV of the convection, when the conditions (e.g., SST, large-scale circulation) for such an ISV to exist are satisfied. The seasonal variability of the MLD, related in part to the monsoon low-level jet variability over the tropical oceans, thus gives a link between the seasonal march of monsoon circulations and the seasonal evolution of the ISV of the convection. This has implications for a better understanding of the origin of the ISV and for the predictability of its amplitude, especially near the monsoon onset date.

Corresponding author address: Dr. Jean-Philippe Duvel, Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure, 24 rue Lhomond, F-75231 Paris CEDEX 05, France. Email: jpduvel@lmd.ens.fr

Save
  • Annamalai, H., and K. R. Sperber, 2005: Regional heat sources and the active and break phases of boreal summer intraseasonal (30–50 day) variability. J. Atmos. Sci., 62 , 27262748.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109 .C12003, doi:10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., and J. Vialard, 2007: Indo-Pacific sea surface temperature perturbations associated with intraseasonal oscillations of the tropical convection. J. Climate, in press.

    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., R. Roca, and J. Vialard, 2004: Ocean mixed layer temperature variations induced by intraseasonal convective perturbations over the Indian Ocean. J. Atmos. Sci., 61 , 10041023.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J., and P. J. Webster, 2003: A hydrological definition of Indian monsoon onset and withdrawal. J. Climate, 16 , 32003211.

  • Flatau, M. K., P. J. Flatau, and D. Rudnick, 2001: The dynamics of double monsoon onset. J. Climate, 14 , 41304146.

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Goulet, L., and J. P. Duvel, 2000: A new approach to detect and characterize intermittent atmospheric oscillations: Application to the intraseasonal oscillation. J. Atmos. Sci., 57 , 23972416.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and G. A. Vecchi, 2001: January 1999 Indian Ocean cooling event. Geophys. Res. Lett., 28 , 37173720.

  • Hendon, H. H., and B. Liebmann, 1990: A composite study of onset of the Australian summer monsoon. J. Atmos. Sci., 47 , 22272240.

  • Inness, P. M., and J. M. Slingo, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part I: Comparison with observations and an atmosphere-only GCM. J. Climate, 16 , 345364.

    • Search Google Scholar
    • Export Citation
  • Joseph, P. V., and S. Sijikumar, 2004: Intraseasonal variability of the low-level jet stream of the Asian summer monsoon. J. Climate, 17 , 14491458.

    • Search Google Scholar
    • Export Citation
  • Julian, P. R., 1971: Some aspects of variance spectra of synoptic scale tropospheric wind components in midlatitudes and in the tropics. Mon. Wea. Rev., 99 , 954965.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., and B. Wang, 2001: Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14 , 29232942.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and J. Shukla, 2000: Intraseasonal and interannual variability of rainfall over India. J. Climate, 13 , 43664377.

  • Lawrence, D. M., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59 , 15931606.

    • Search Google Scholar
    • Export Citation
  • LinHoWang, B., 2002: The time–space structure of the Asian–Pacific summer monsoon: A fast annual cycle view. J. Climate, 15 , 20012019.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17 , 43684386.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7 , 11951202.

    • Search Google Scholar
    • Export Citation
  • Sengupta, D., and M. Ravichandran, 2001: Oscillations of Bay of Bengal sea surface temperature during the 1998 summer monsoon. Geophys. Res. Lett., 28 , 20332036.

    • Search Google Scholar
    • Export Citation
  • Shenoi, S. S. C., D. Shankar, and S. R. Shetye, 2002: Differences in heat budgets of near-surface Arabian Sea and Bay of Bengal: Implications for the summer monsoon. J. Geophys. Res., 107 .3052, doi:10.1029/2000JC000679.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and H. Gildor, 2003: A simple time-dependent model of SST hot spots. J. Climate, 16 , 39783992.

  • Stephens, G. L., P. J. Webster, R. H. Johnson, R. Engelen, and T. L’Ecuyer, 2004: Observational evidence for the mutual regulation of the tropical hydrological cycle and tropical sea surface temperatures. J. Climate, 17 , 22132224.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and D. E. Harrison, 2002: Monsoon breaks and subseasonal sea surface temperature variability in the Bay of Bengal. J. Climate, 15 , 14851493.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, and J-H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden–Julian oscillation: A model perturbation experiment. J. Atmos. Sci., 56 , 333358.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xu, 1997: Northern Hemisphere summer monsoon singularities and climatological intraseasonal oscillation. J. Climate, 10 , 10711085.

    • Search Google Scholar
    • Export Citation
  • WangLinHo, B., 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15 , 386398.

  • Wang, B., and Q. Ding, 2006: Changes in global monsoon precipitation over the past 56 years. Geophys. Res. Lett., 33 .L06711, doi:10.1029/2005GL025347.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and M. Dong, 2004: Seasonality in the Madden–Julian oscillation. J. Climate, 17 , 31693180.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 157 50 4
PDF Downloads 118 60 4