Control of Dry Season Evapotranspiration over the Amazonian Forest as Inferred from Observations at a Southern Amazon Forest Site

Robinson I. Negrón Juárez School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Robinson I. Negrón Juárez in
Current site
Google Scholar
PubMed
Close
,
Martin G. Hodnett School of Geosciences, Free University of Amsterdam, Amsterdam, Netherlands

Search for other papers by Martin G. Hodnett in
Current site
Google Scholar
PubMed
Close
,
Rong Fu School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Rong Fu in
Current site
Google Scholar
PubMed
Close
,
Michael L. Goulden Earth System Science and Ecology, and Evolutionary Biology, University of California, Irvine, Irvine, California

Search for other papers by Michael L. Goulden in
Current site
Google Scholar
PubMed
Close
, and
Celso von Randow Alterra, Wageningen University and Research Centre, Wageningen, Netherlands

Search for other papers by Celso von Randow in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The extent to which soil water storage can support an average dry season evapotranspiration (ET) is investigated using observations from the Rebio Jarú site for the period of 2000 to 2002. During the dry season, when total rainfall is less than 100 mm, the soil moisture storage available to root uptake in the top 3-m layer is sufficient to maintain the ET rate, which is equal to or higher than that in the wet season. With a normal or less-than-normal dry season rainfall, more than 75% of the ET is supplied by soil water below 1 m, whereas during a rainier dry season, about 50% of ET is provided by soil water from below 1 m. Soil moisture below 1-m depth is recharged by rainfall during the previous wet season: dry season rainfall rarely infiltrates to this depth. These results suggest that, even near the southern edge of the Amazon forest, seasonal and moderate interannual rainfall deficits can be mitigated by an increase in root uptake from deeper soil.

How dry season ET varies geographically within the Amazon and what might control its geographic distribution are examined by comparing in situ observations from 10 sites from different areas of Amazonia reported during the last two decades. Results show that the average dry season ET varies less than 1 mm day−1 or 30% from the driest to nearly the wettest parts of Amazonia and is largely correlated with the change of surface net radiation of 25% and 30%. Thus the geographic variation of the average dry season ET appears to be mainly determined by the surface radiation.

Corresponding author address: Robinson I. Negrón Juárez, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Ford ES&T Bldg., 311 Ferst Drive, Atlanta, GA 30332-0340. Email: rjuarez@eas.gatech.edu

Abstract

The extent to which soil water storage can support an average dry season evapotranspiration (ET) is investigated using observations from the Rebio Jarú site for the period of 2000 to 2002. During the dry season, when total rainfall is less than 100 mm, the soil moisture storage available to root uptake in the top 3-m layer is sufficient to maintain the ET rate, which is equal to or higher than that in the wet season. With a normal or less-than-normal dry season rainfall, more than 75% of the ET is supplied by soil water below 1 m, whereas during a rainier dry season, about 50% of ET is provided by soil water from below 1 m. Soil moisture below 1-m depth is recharged by rainfall during the previous wet season: dry season rainfall rarely infiltrates to this depth. These results suggest that, even near the southern edge of the Amazon forest, seasonal and moderate interannual rainfall deficits can be mitigated by an increase in root uptake from deeper soil.

How dry season ET varies geographically within the Amazon and what might control its geographic distribution are examined by comparing in situ observations from 10 sites from different areas of Amazonia reported during the last two decades. Results show that the average dry season ET varies less than 1 mm day−1 or 30% from the driest to nearly the wettest parts of Amazonia and is largely correlated with the change of surface net radiation of 25% and 30%. Thus the geographic variation of the average dry season ET appears to be mainly determined by the surface radiation.

Corresponding author address: Robinson I. Negrón Juárez, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Ford ES&T Bldg., 311 Ferst Drive, Atlanta, GA 30332-0340. Email: rjuarez@eas.gatech.edu

Save
  • Araújo, A. C., and Coauthors, 2002: Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site. J. Geophys. Res., 107 .8090, doi:10.1029/2001JD000676.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., P. L. Silva Dias, M. A. F. Silva Dias, and C. Nobre, 2002: The Large-Scale Biosphere–Atmosphere Experiment in Amazonia (LBA): Insights and future research needs. J. Geophys. Res., 107 .8086, doi:10.1029/2002JD002704.

    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., D. Entekhabi, and P. E. Eagleson, 1993: Estimation of continental precipitation recycling. J. Climate, 6 , 10771089.

  • Burgess, S. S. O., M. A. Adams, N. C. Turner, and C. K. Ong, 1998: The redistribution of soil water by tree root systems. Oecologia, 115 , 306311.

    • Search Google Scholar
    • Export Citation
  • Costa, M. H., J. D. C. Souza-Filho, and A. Ribeiro, 2004: Comments on “The regional evapotranspiration of the Amazon.”. J. Hydrometeor., 5 , 12791280.

    • Search Google Scholar
    • Export Citation
  • Culf, A. D., G. Fisch, and M. G. Hodnett, 1995: The albedo of Amazonian forest and ranch land. J. Climate, 8 , 15441554.

  • da Rocha, H. R., M. L. Goulden, S. D. Miller, M. C. Menton, L. D. V. O. Pinto, H. C. de Freitas, and A. M. E. S. Figueira, 2004: Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecol. Appl., 14 (Suppl.) , S22S32.

    • Search Google Scholar
    • Export Citation
  • Dawson, T. E., 1993: Hydraulic lift and water use in plants: Implications for water balance, performance and plant-plant interactions. Oecologia, 95 , 565574.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., and R. L. Bras, 1994: Precipitation recycling in the Amazon basin. Quart. J. Roy. Meteor. Soc., 120 , 861880.

  • Finnigan, J. J., R. Clement, Y. Malhi, R. Leuning, and H. A. Cleugh, 2003: A re-evaluation of long-term flux measurements techniques. Part I: Averaging and coordinate rotation. Bound.-Layer Meteor., 107 , 148.

    • Search Google Scholar
    • Export Citation
  • Fisch, G. F., J. A. Marengo, and C. A. Nobre, 1996: Climate of Amazonia (in Portuguese). Climanálise, INPE, 24–41.

  • Foken, T., F. Wimmer, M. Mauder, C. Thomas, and C. Liebethal, 2006: Some aspects of the energy balance closure problem. Atmos. Chem. Phys. Discuss., 6 , 33813402.

    • Search Google Scholar
    • Export Citation
  • Fu, R., and W. Li, 2004: The influence of the land surface on the transition from dry to wet season in Amazonia. Theor. Appl. Climatol., 78 , 97110.

    • Search Google Scholar
    • Export Citation
  • Gash, J. H. C., and A. J. Dolman, 2003: Sonic anemometer (co)sine response and flux measurement: I. The potential for (co)sine error to affect sonic anemometer-based flux measurements. Agric. For. Meteor., 119 , 195207.

    • Search Google Scholar
    • Export Citation
  • Gash, J. H. C., C. A. Nobre, J. M. Roberts, and R. L. Victoria, 1996: An overview of ABRACOS. Amazonian Deforestation and Climate, J. H. C. Gash et al., Eds., John Wiley & Sons, 1–14.

  • Goulden, M. L., S. D. Miller, H. R. da Rocha, M. C. Menton, H. C. de Freitas, A. M. E. S. Figueira, and C. A. D. de Sousa, 2004: Diel and seasonal patterns of tropical forest CO2 exchange. Ecol. Appl., 14 (Suppl.) , S42S54.

    • Search Google Scholar
    • Export Citation
  • Harris, P. P., C. Huntingford, P. M. Cox, J. H. C. Gash, and Y. Malhi, 2004: Effect of soil moisture on canopy conductance of Amazonian rainforest. Agric. For. Meteor., 122 , 215227.

    • Search Google Scholar
    • Export Citation
  • Hodnett, M. G., L. P. da Silva, H. R. da Rocha, and R. C. Senna, 1995: Seasonal soil-water storage changes beneath central Amazonian rain-forest and pasture. J. Hydrol., 170 , 233254.

    • Search Google Scholar
    • Export Citation
  • Hodnett, M. G., M. D. Oyama, J. Tomasella, and A. Marques Filho, 1996a: Comparison of long-term soil water storage behaviour under pasture and forest in three areas of Amazonia. Amazonian Deforestation and Climate, J. H. C. Gash et al., Eds., John Wiley & Sons, 57–77.

  • Hodnett, M. G., J. Tomasella, A. Marques Filho, and M. D. Oyama, 1996b: Deep soil water uptake by forest and pasture in central Amazonia: Predictions from long term daily rainfall data using a simple water balance model. Amazonian Deforestation and Climate, J. H. C. Gash et al., Eds., John Wiley & Sons, 79–99.

  • Hutyra, L. R., J. W. Munger, C. A. Nobre, S. R. Saleska, S. A. Vieira, and S. C. Wofsy, 2005: Climatic variability and vegetation vulnerability in Amazonia. Geophys. Res. Lett., 32 .L24712, doi:10.1029/2005GL024981.

    • Search Google Scholar
    • Export Citation
  • Instituto Nacional de Meteorologia, 1992: Climate Normals (1961–1990). (in Portuguese). INEMET, 84 pp.

  • Jackson, R. B., J. S. Sperry, and T. E. Dawson, 2000: Root water uptake and transport: Using physiological processes in global predictions. Trends Plant Sci., 5 , 482488.

    • Search Google Scholar
    • Export Citation
  • Jipp, P. H., D. C. Nepstad, D. K. Cassel, and C. R. de Carvalho, 1998: Deep soil moisture storage and transpiration in forests and pastures of seasonally-dry Amazonia. Climatic Change, 39 , 395412.

    • Search Google Scholar
    • Export Citation
  • Kaldenhoff, R., K. Grote, J. J. Zhu, and U. Zimmermann, 1998: Significance of plasmalemma aquaporins for water-transport in Arabidopsis thaliana. Plant J., 14 , 121128.

    • Search Google Scholar
    • Export Citation
  • Keller, M., and Coauthors, 2004: Ecological research in the large-scale biosphere-atmosphere experiment in Amazonia: Early results. Ecol. Appl., 14 (Suppl.) , S3S16.

    • Search Google Scholar
    • Export Citation
  • Kjellbom, P., C. Larsson, I. Johansson, M. Karlsson, and U. Johanson, 1999: Aquaporins and water homeostasis in plants. Trends Plant Sci., 4 , 308314.

    • Search Google Scholar
    • Export Citation
  • Kleidon, A., and M. Heimann, 2000: Assessing the role of deep rooted vegetation in the climate system with model simulations: Mechanism, comparison to observations and implications for Amazonian deforestation. Climate Dyn., 16 , 183199.

    • Search Google Scholar
    • Export Citation
  • Kruijt, B., and Coauthors, 2004: The robustness of eddy correlation fluxes for Amazon rain forest conditions. Ecol. Appl., 14 (Suppl.) , S101S113.

    • Search Google Scholar
    • Export Citation
  • Large Scale Biosphere–Atmosphere Experiment in Amazonia, 1996: Concise experimental plan. CPTEC/INPE, 44 pp.

  • Lawrimore, J. H., and Coauthors, 2001: Climate assessment for 2000. Bull. Amer. Meteor. Soc., 82 , (6). S1S55.

  • Li, W., and R. Fu, 2004: Transition of the large-scale atmospheric and land surface conditions from the dry to the wet season over Amazonia as diagnosed by the ECMWF Re-Analysis. J. Climate, 17 , 26372651.

    • Search Google Scholar
    • Export Citation
  • Malhi, Y., E. Pegoraro, A. D. Nobre, M. G. P. Pereira, J. Grace, A. D. Culf, and R. Clement, 2002: Energy and water dynamics of a central Amazonian rain forest. J. Geophys. Res., 107 .8061, doi:10.1029/2001JD000623.

    • Search Google Scholar
    • Export Citation
  • McWilliam, A. L. C., O. M. R. Cabral, B. M. Gomes, J. L. Esteves, and J. M. Roberts, 1996: Forest and pasture leaf-gas exchange in south-west Amazonia. Amazonian Deforestation and Climate, J. H. C. Gash et al., Eds., John Wiley & Sons, 265–285.

  • Monteith, J. L., 1995: A reinterpretation of stomatal response to humidity. Plant Cell Environ., 18 , 357364.

  • Moore, C. J., and G. Fisch, 1986: Estimating heat-storage in Amazonian tropical forest. Agric. For. Meteor., 38 , 147168.

  • Mott, K. A., and D. F. Parkhurst, 1991: Stomatal responses to humidity in air and helox. Plant Cell Environ., 14 , 509515.

  • Nepstad, D. C., and Coauthors, 1994: The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature, 372 , 666669.

    • Search Google Scholar
    • Export Citation
  • Nepstad, D. C., and Coauthors, 2002: The effects of partial throughfall exclusion on canopy processes, above ground production, and biogeochemistry of an Amazon forest. J. Geophys. Res., 107 .8085, doi:10.1029/2001JD000360.

    • Search Google Scholar
    • Export Citation
  • Oliveira, R. S., T. E. Dawson, S. S. O. Burgess, and D. C. Nepstad, 2005: Hydraulic redistribution in three Amazonian trees. Oecologia, 145 , 354363.

    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., 1959: Turbulent Transfer in the Lower Atmosphere. University of Chicago Press, 130 pp.

  • Priestley, C. H. B., and R. J. Taylor, 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100 , 8192.

    • Search Google Scholar
    • Export Citation
  • Sakai, R. K., D. R. Fitzjarrald, and K. E. Moore, 2001: Importance of low-frequency contributions to eddy fluxes observed over rough surfaces. J. Appl. Meteor., 40 , 21782192.

    • Search Google Scholar
    • Export Citation
  • Salati, E., 1987: The forest and the hydrological cycle. The Geophysiology of Amazonia: Vegetation and Climate Interactions, R. E. Dickinson, Ed., John Wiley & Sons, 273–296.

  • Schenk, H. J., and R. B. Jackson, 2002: Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol., 90 , 480494.

    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 1988: Evaporation from Amazonian rainforest. Proc. Roy. Soc. London, 233 , 321346.

  • Silva Dias, P. L. S., and J. A. Marengo, 1999: Atmospheric water (in Portuguese). Aguas doces no Brasil, A. C. Rebouças, B. Braga, and J. G. Tundisi, Eds., Escrituras Editora, 65–115.

  • Slatyer, R. O., and I. C. McIlroy, 1961: Practical Micrometeorology. UNESCO, 310 pp.

  • Sommer, R., T. D. D. Sa, K. Vielhauer, A. C. de Araujo, H. Folster, and P. L. G. Vlek, 2002: Transpiration and canopy conductance of secondary vegetation in the eastern Amazon. Agric. For. Meteor., 112 , 103121.

    • Search Google Scholar
    • Export Citation
  • Souza-Filho, J. D. C., A. Ribeiro, M. H. Costa, and J. C. P. Cohen, 2005: Control mechanisms of the seasonal variation of transpiration in a northeast Amazonia tropical rainforest (in Portuguese). Acta Amazonica, 35 , 223229.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • van der Molen, M. K., J. H. C. Gash, and J. A. Elbers, 2004: Sonic anemometer (co)sine response and flux measurement. II. The effect of introducing an angle of attack dependent calibration. Agric. For. Meteor., 122 , 95109.

    • Search Google Scholar
    • Export Citation
  • Viswanadham, Y., V. P. Silva Filho, and R. G. B. Andre, 1991: The Priestley Taylor parameter α for the Amazon Forest. For. Ecol. Manage., 38 , 211225.

    • Search Google Scholar
    • Export Citation
  • von Randow, C., and Coauthors, 2004: Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theor. Appl. Climatol., 78 , 526.

    • Search Google Scholar
    • Export Citation
  • Vourlitis, G. L., N. P. Filho, M. M. S. Hayashi, Jde S. Nogueira, F. T. Caseiro, and J. H. Campelo Jr., 2002: Seasonal variations in the evapotranspiration of a transitional tropical forest of Mato Grosso, Brazil. Water Resour. Res., 38 .1094, doi:10.1029/2000WR000122.

    • Search Google Scholar
    • Export Citation
  • Waple, A. M., and J. H. Lawrimore, Eds. 2003: State of the climate in 2002. Bull. Amer. Meteor. Soc., 84 , 6. S1S68.

  • Waple, A. M., and Coauthors, 2002: Climate assessment for 2001. Bull. Amer. Meteor. Soc., 83 , 6. S1S62.

  • Werth, D., and R. Avissar, 2004: The regional evapotranspiration of the Amazon. J. Hydrometeor., 5 , 100109.

  • Wilson, K., and Coauthors, 2002: Energy balance closure at FLUXNET sites. Agric. For. Meteor., 113 , 223243.

  • Yang, W., and Coauthors, 2006: MODIS leaf area index products: From validation to algorithm improvement. IEEE Trans. Geosci. Remote Sens., 44 , 18851898.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2265 406 21
PDF Downloads 577 133 12