An Improved Canopy Integration Scheme for a Land Surface Model with Prognostic Canopy Structure

Peter E. Thornton Climate and Global Dynamics Division, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Peter E. Thornton in
Current site
Google Scholar
PubMed
Close
and
Niklaus E. Zimmermann Department of Landscape Research, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland

Search for other papers by Niklaus E. Zimmermann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new logical framework relating the structural and functional characteristics of a vegetation canopy is presented, based on the hypothesis that the ratio of leaf area to leaf mass (specific leaf area) varies linearly with overlying leaf area index within the canopy. Measurements of vertical gradients in specific leaf area and leaf carbon:nitrogen ratio for five species (two deciduous and three evergreen) in a temperate climate support this hypothesis. This new logic is combined with a two-leaf (sunlit and shaded) canopy model to arrive at a new canopy integration scheme for use in the land surface component of a climate system model. An inconsistency in the released model radiation code is identified and corrected. Also introduced here is a prognostic canopy model with coupled carbon and nitrogen cycle dynamics. The new scheme is implemented within the Community Land Model and tested in both diagnostic and prognostic canopy modes. The new scheme increases global gross primary production by 66% (from 65 to 108 Pg carbon yr−1) for diagnostic model simulations driven with reanalysis surface weather, with similar results (117 PgC yr−1) for the new prognostic model. Comparison of model predictions to global syntheses of observations shows generally good agreement for net primary productivity (NPP) across a range of vegetation types, with likely underestimation of NPP in tundra and larch communities. Vegetation carbon stocks are higher than observed in forest systems, but the ranking of stocks by vegetation type is accurately captured.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Peter E. Thornton, Climate and Global Dynamics Division, National Center for Atmospheric Research, 1850 Table Mesa Dr., Boulder, CO 80503. Email: thornton@ucar.edu

Abstract

A new logical framework relating the structural and functional characteristics of a vegetation canopy is presented, based on the hypothesis that the ratio of leaf area to leaf mass (specific leaf area) varies linearly with overlying leaf area index within the canopy. Measurements of vertical gradients in specific leaf area and leaf carbon:nitrogen ratio for five species (two deciduous and three evergreen) in a temperate climate support this hypothesis. This new logic is combined with a two-leaf (sunlit and shaded) canopy model to arrive at a new canopy integration scheme for use in the land surface component of a climate system model. An inconsistency in the released model radiation code is identified and corrected. Also introduced here is a prognostic canopy model with coupled carbon and nitrogen cycle dynamics. The new scheme is implemented within the Community Land Model and tested in both diagnostic and prognostic canopy modes. The new scheme increases global gross primary production by 66% (from 65 to 108 Pg carbon yr−1) for diagnostic model simulations driven with reanalysis surface weather, with similar results (117 PgC yr−1) for the new prognostic model. Comparison of model predictions to global syntheses of observations shows generally good agreement for net primary productivity (NPP) across a range of vegetation types, with likely underestimation of NPP in tundra and larch communities. Vegetation carbon stocks are higher than observed in forest systems, but the ranking of stocks by vegetation type is accurately captured.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Peter E. Thornton, Climate and Global Dynamics Division, National Center for Atmospheric Research, 1850 Table Mesa Dr., Boulder, CO 80503. Email: thornton@ucar.edu

Save
  • Atjay, G. L., P. Ketner, and P. Duvigneaud, 1979: Terrestrial primary production and phytomass. The Global Carbon Cycle, B. Bolin et al., Eds., John Wiley & Sons, 129–181.

    • Search Google Scholar
    • Export Citation
  • Berthelot, M., P. Friedlingstein, P. Ciais, P. Monfray, J. L. Dufresne, H. Le Treut, and L. Fairhead, 2002: Global response of the terrestrial biosphere to CO2 and climate change using a coupled climate-carbon cycle model. Global Biogeochem. Cycles, 16 .1084, doi:10.1029/2001GB001827.

    • Search Google Scholar
    • Export Citation
  • Betts, R. A., P. M. Cox, S. E. Lee, and F. I. Woodward, 1997: Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature, 387 , 796799.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1998: The land surface climatology for the NCAR land surface model coupled to the NCAR Community Climate Model. J. Climate, 11 , 13071326.

    • Search Google Scholar
    • Export Citation
  • Bond, B. J., B. T. Farnsworth, R. A. Coulombe, and W. E. Winner, 1999: Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance. Oecologia, 120 , 183192.

    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2004: The Rhône-Aggregation Land Surface Scheme intercomparison project: An overview. J. Climate, 17 , 187208.

    • Search Google Scholar
    • Export Citation
  • Carswell, F. E., and Coauthors, 2000: Photosynthetic capacity in a central Amazonian rain forest. Tree Physiol., 20 , 179186.

  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Cox, P. M., R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R. Rowntree, and J. Smith, 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15 , 183203.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408 , 184187.

    • Search Google Scholar
    • Export Citation
  • Cramer, J., T. Fahey, and J. Battles, 2000: Patterns of leaf mass, area, and nitrogen in young northern hardwood forests. Amer. Midland Nat., 144 , 253264.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., R. E. Dickinson, and Y-P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Climate, 17 , 22812299.

    • Search Google Scholar
    • Export Citation
  • Dang, Q. L., H. A. Margolis, M. Sy, M. R. Coyea, G. J. Collatz, and C. L. Walthall, 1997: Profiles of photosynthetically active radiation, nitrogen and photosynthetic capacity in the boreal forest: Implications for scaling from leaf to canopy. J. Geophys. Res., 102 , 2884528859.

    • Search Google Scholar
    • Export Citation
  • Delire, C., J. A. Foley, and S. Thompson, 2004: Long-term variability in a coupled atmosphere–biosphere model. J. Climate, 17 , 39473959.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., R. J. Stouffer, K. W. Dixon, M. J. Spelman, T. R. Knutson, A. J. Broccoli, P. J. Kushner, and R. T. Wetherald, 2002: Review of simulations of climate variability and change with the GFDL R30 coupled climate model. Climate Dyn., 19 , 555574.

    • Search Google Scholar
    • Export Citation
  • de Pury, D. G. G., and G. D. Farquhar, 1997: Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ., 20 , 537557.

    • Search Google Scholar
    • Export Citation
  • Dewar, R. C., 1996: The correlation between plant growth and intercepted radiation: An interpretation in terms of optimal plant nitrogen content. Ann. Bot., 78 , 125136.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1984: Modeling evapotranspiration for three-dimensional global climate models. Climate Processes and Climate Sensitivity, Geophys. Monogr., Vol. 29, Amer. Geophys. Union, 58–72.

    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., M. Shaikh, R. Bryant, and L. Graumlich, 1998: Interactive canopies for a climate model. J. Climate, 11 , 28232836.

  • Dickinson, R. E., and Coauthors, 2002: Nitrogen controls on climate model evapotranspiration. J. Climate, 15 , 278295.

  • Dickinson, R. E., K. W. Oleson, G. B. Bonan, F. M. Hoffman, P. Thornton, M. Vertenstein, Z-L. Yang, and X. Zeng, 2006: The Community Land Model and its climate statistics as a component of the Community Climate System Model. J. Climate, 19 , 23022324.

    • Search Google Scholar
    • Export Citation
  • Dixon, R. K., S. Brown, R. A. Houghton, A. M. Solomon, M. C. Trexler, and J. Wisniewski, 1994: Carbon pools and flux of global forest ecosystems. Science, 263 , 185190.

    • Search Google Scholar
    • Export Citation
  • Ducoudré, N. I., K. Laval, and A. Perrier, 1993: SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land–atmosphere interface within the LMD atmospheric general circulation model. J. Climate, 6 , 248273.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J-L., P. Friedlingstein, M. Berthelot, L. Bopp, P. Ciais, L. Fairhead, H. Le Treut, and P. Monfray, 2002: On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett., 29 .1405, doi:10.1029/2001GL013777.

    • Search Google Scholar
    • Export Citation
  • Evans, J. R., and H. Poorter, 2001: Photosynthetic acclimation of plants to growth irradiance: The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ., 24 , 755767.

    • Search Google Scholar
    • Export Citation
  • Farquhar, G. D., and S. von Caemmerer, 1982: Modelling of photosynthetic response to environmental conditions. Water Relation and Carbon Assimilation, O. L. Lange et al., Eds., Vol. 2, Physiological Plant Ecology, Springer-Verlag, 549–587.

    • Search Google Scholar
    • Export Citation
  • Farquhar, G. D., S. von Caemmerer, and J. A. Berry, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149 , 7890.

    • Search Google Scholar
    • Export Citation
  • Field, C., 1983: Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program. Oecologia, 56 , 341347.

    • Search Google Scholar
    • Export Citation
  • Field, C., J. Merino, and H. A. Mooney, 1983: Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia, 60 , 384389.

    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., J. Michaelsen, F. W. Davis, H. Walker, and D. S. Schimel, 1994: Estimating grassland biomass and leaf area index using ground and satellite data. Int. J. Remote Sens., 15 , 14011420.

    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., L. Bopp, P. Ciais, J-L. Dufresne, L. Fairhead, H. LeTreut, P. Monfray, and J. Orr, 2001: Positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett., 28 , 15431546.

    • Search Google Scholar
    • Export Citation
  • Gutschick, V. P., and F. W. Wiegel, 1988: Optimizing the canopy photosynthesis rate by patterns of investment in specific leaf mass. Amer. Nat., 132 , 6786.

    • Search Google Scholar
    • Export Citation
  • Han, Q., T. Kawasaki, S. Katahata, Y. Mukai, and Y. Chiba, 2003: Horizontal and vertical variations in photosynthetic capacity in a Pinus densiflora crown in relation to leaf nitrogen allocation and acclimation to irradiance. Tree Physiol., 23 , 851857.

    • Search Google Scholar
    • Export Citation
  • Hikosaka, K., I. Terashima, and S. Katoh, 1994: Effects of leaf age, nitrogen nutrition and photon flux density on the distribution of nitrogen among leaves of a vine (lpomoea tricolor Cav.) grown horizontally to avoid mutual shading of leaves. Oecologia, 97 , 451457.

    • Search Google Scholar
    • Export Citation
  • Hirose, T., and M. J. A. Werger, 1994: Photosynthetic capacity and nitrogen partitioning among species in the canopy of a herbaceous plant community. Oecologia, 100 , 203212.

    • Search Google Scholar
    • Export Citation
  • Hollinger, D. Y., 1996: Optimality and nitrogen allocation in a tree canopy. Tree Physiol., 16 , 627634.

  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Ishida, A., and T. Toma, and Marjenah, 1999: Leaf gas exchange and chlorophyll flourescence in relation to leaf angle, azimuth, and canopy position in the tropical pioneer tree, Macaranga conifera. Tree Physiol., 19 , 117124.

    • Search Google Scholar
    • Export Citation
  • Johns, T. C., R. E. Carnell, J. F. Crossley, J. M. Gregory, J. F. B. Mitchell, C. A. Senior, S. F. B. Tett, and R. A. Wood, 1997: The second Hadley Centre coupled ocean-atmosphere GCM: Model description, spinup, and validation. Climate Dyn., 13 , 103134.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Knops, J. M. H., and K. Reinhart, 2000: Specific leaf area along a nitrogen fertilization gradient. Amer. Midland Nat., 144 , 265272.

  • Kuehn, G. D., and B. A. McFadden, 1969: Ribulose 1, 5-diphosphate carboxylase from Hydrogenomonas eutropha and Hydrogenomonas facilis. II. Molecular weight, subunits, composition, and sulfhydryl groups. Biochem. J., 8 , 24032408.

    • Search Google Scholar
    • Export Citation
  • Kumagai, T., and Coauthors, 2006: Modeling CO2 exchange over a Bornean tropical rain forest using measured vertical and horizontal variations in leaf-level physiological parameters and leaf area densities. J. Geophys. Res., 111 .D10107, doi:10.1029/2005JD006676.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., P. E. Thornton, K. W. Oleson, and G. B. Bonan, 2007: The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land–atmosphere interaction. J. Hydrometeor., in press.

    • Search Google Scholar
    • Export Citation
  • Le Roux, X., H. SinoQuet, and M. Vandame, 1999: Spatial distribution of leaf dry weight per area and leaf nitrogen concentration in relation to local radiation regime within an isolated tree crown. Tree Physiol., 19 , 181188.

    • Search Google Scholar
    • Export Citation
  • Levis, S., J. A. Foley, and D. Pollard, 2000: Large-scale vegetation feedbacks on a doubled CO2 climate. J. Climate, 13 , 13131325.

  • Mahfouf, J-F., A. O. Manzi, J. Noilhan, H. Giordani, and M. Déqué, 1995: The land surface scheme ISBA within the Météo-France climate model ARPEGE. Part I: Implementation and preliminary results. J. Climate, 8 , 20392057.

    • Search Google Scholar
    • Export Citation
  • Medlyn, B. E., 1996: The optimal allocation of nitrogen within the C3 photosynthetic system at elevated CO2. Aust. J. Plant Physiol., 23 , 593603.

    • Search Google Scholar
    • Export Citation
  • Meir, P., B. Kruijt, M. Braodmeadow, E. Barbosa, O. Kull, F. Carswell, A. Nobre, and P. G. Jarvis, 2002: Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant Cell Environ., 25 , 343357.

    • Search Google Scholar
    • Export Citation
  • Meziane, D., and B. Shipley, 1999: Interacting determinants of specific leaf area in 22 herbaceous species: Effects of irradiance and nutrient availability. Plant Cell Environ., 22 , 447459.

    • Search Google Scholar
    • Export Citation
  • Monserud, R. A., and J. D. Marshall, 1999: Allometric crown relations in three northern Idaho conifer species. Can. J. For. Res., 29 , 521535.

    • Search Google Scholar
    • Export Citation
  • Niinemets, Ü, and J. D. Tenhunen, 1997: A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ., 20 , 845866.

    • Search Google Scholar
    • Export Citation
  • Niinemets, Ü, and O. Kull, 1998: Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: Implications for foliage morphological plasticity. Tree Physiol., 18 , 467479.

    • Search Google Scholar
    • Export Citation
  • Niinemets, Ü, O. Kull, and J. D. Tenhunen, 1998: An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance. Tree Physiol., 18 , 681696.

    • Search Google Scholar
    • Export Citation
  • Niinemets, Ü, D. S. Ellsworth, A. Lukjanova, and M. Tobias, 2002: Dependence of needle architecture and chemical composition on canopy light availability in three North American Pinus species with contrasting needle length. Tree Physiol., 22 , 747761.

    • Search Google Scholar
    • Export Citation
  • Norman, J. M., 1980: Interfacing leaf and canopy irradiance interception models. Predicting Photosynthesis for Ecosystem Models, J. D. Hesketh and J. W. Jones, Eds., CRC Press, Inc., 49–67.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). National Center for Atmospheric Research Tech. Note NCARTN-461+STR, 174 pp.

  • Poorter, H., and J. R. Evans, 1998: Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia, 116 , 2637.

    • Search Google Scholar
    • Export Citation
  • Poorter, L., S. F. Oberbauer, and D. B. Clark, 1995: Leaf optical properties along a vertical gradient in a tropical rain forest canopy in Costa Rica. Amer. J. Bot., 82 , 12571263.

    • Search Google Scholar
    • Export Citation
  • Raulier, F., P. Y. Bernier, and C-H. Ung, 1999: Canopy photosynthesis of sugar maple (Acer saccharum): Comparing big-leaf and multilayer extrapolations of leaf-level measurements. Tree Physiol., 19 , 407420.

    • Search Google Scholar
    • Export Citation
  • Reich, P. B., B. D. Kloeppel, D. S. Ellsworth, and M. B. Walters, 1995: Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species. Oecologia, 104 , 2430.

    • Search Google Scholar
    • Export Citation
  • Reich, P. B., D. S. Ellsworth, and M. B. Walters, 1998: Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: Evidence from within and across species and functional groups. Funct. Ecol., 12 , 948958.

    • Search Google Scholar
    • Export Citation
  • Reynolds, J. F., J. Chen, P. C. Harley, D. W. Hilbert, R. L. Dougherty, and J. D. Tenhunen, 1992: Modeling the effects of elevated CO2 on plants: Extrapolating leaf response to a canopy. Agric. For. Meteor., 61 , 6994.

    • Search Google Scholar
    • Export Citation
  • Roberts, J., R. Hopkins, and M. Morecroft, 1999: Towards a predictive description of forest canopies from litter properties. Funct. Ecol., 13 , 265272.

    • Search Google Scholar
    • Export Citation
  • Rosati, A., G. Esparza, T. M. DeJong, and R. W. Pearcy, 1999: Influence of canopy light environment and nitrogen availability on leaf photosynthetic characteristics and photosynthetic nitrogen-use efficiency of field-grown nectarine trees. Tree Physiol., 19 , 173180.

    • Search Google Scholar
    • Export Citation
  • Rosati, A., K. R. Day, and T. M. DeJong, 2000: Distribution of leaf mass per unit area and leaf nitrogen concentration determine partitioning of leaf nitrogen within tree canopies. Tree Physiol., 20 , 271276.

    • Search Google Scholar
    • Export Citation
  • Roy, J., B. Saugier, and H. A. Mooney, 2001: Terrestrial Global Productivity. Academic Press, 573 pp.

  • Scholes, R. J., P. G. H. Frost, and Y. H. Tian, 2004: Canopy structure in savannas along a moisture gradient on Kalahari sands. Global Change Biol., 10 , 292302.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, 1986: A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43 , 505531.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., J. A. Berry, G. J. Collatz, C. B. Field, and F. G. Hall, 1992: Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens. Environ., 42 , 187216.

    • Search Google Scholar
    • Export Citation
  • Sims, D. A., and R. W. Pearcy, 1989: Photosynthesis characteristics of a tropical forest understory herb, Alocasia macrorrhiza, and a related crop species, Colocasia esculenta grown in contrasting light environments. Oecologia, 79 , 5359.

    • Search Google Scholar
    • Export Citation
  • Sinclair, T. R., C. E. Murphy, and K. R. Knoerr, 1976: Development and evaluation of simplified models for simulating canopy photosynthesis and transpiration. J. Appl. Ecol., 13 , 813829.

    • Search Google Scholar
    • Export Citation
  • Souza, R. P., and I. F. M. Válio, 2003: Leaf optical properties as affected by shade in saplings of six tropical tree species differing in successional status. Brazilian J. Plant Physiol., 15 , 4954.

    • Search Google Scholar
    • Export Citation
  • Stockle, C. O., 1992: Canopy photosynthesis and transpiration estimates using radiation interception models with different levels of detail. Ecol. Modell., 60 , 3144.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., 1998: Regional ecosystem simulation: Combining surface- and satellite-based observations to study linkages between terrestrial energy and mass budgets. Ph.D. thesis, University of Montana, 280 pp.

  • Thornton, P. E., and N. A. Rosenbloom, 2005: Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecol. Modell., 189 , 2548.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., and Coauthors, 2002: Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric. For. Meteor., 113 , 185222.

    • Search Google Scholar
    • Export Citation
  • Wang, Y-P., and R. Leuning, 1998: A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: Model description and comparison with a multi-layered model. Agric. For. Meteor., 91 , 89111.

    • Search Google Scholar
    • Export Citation
  • WBGU, 1988: Die Anrechnung biolischer Quellen und Senken in Kyoto-Protokoll: Fortschritt oder Rückschlang für den globalen Umweltschutz Sondergutachten (in German). Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränerungen, Bremerhaven, Germany, 76 pp.

  • White, J. D., and N. A. Scott, 2006: Specific leaf area and nitrogen distribution in New Zealand forests: Species independently respond to intercepted light. For. Ecol. Manage., 226 , 319329.

    • Search Google Scholar
    • Export Citation
  • White, M. A., P. E. Thornton, and S. W. Running, 1997: A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochem. Cycles, 11 , 217234.

    • Search Google Scholar
    • Export Citation
  • White, M. A., P. E. Thornton, S. W. Running, and R. R. Nemani, 2000: Parameterization and sensitivity analysis of the BIOME–BGC terrestrial ecosystem model: Net primary production controls. Earth Interactions, 4 .[Available online at http://EarthInteractions.org.].

    • Search Google Scholar
    • Export Citation
  • Wilson, K. B., D. B. Baldocchi, and P. J. Hanson, 2000: Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiol., 20 , 565578.

    • Search Google Scholar
    • Export Citation
  • Woodrow, I. E., and J. A. Berry, 1988: Enzymatic regulation of photosynthetic CO2 fixation in C3 plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 39 , 533594.

    • Search Google Scholar
    • Export Citation
  • Wullschleger, S. D., 1993: Biochemical limitations to carbon assimilation in C3 plants—A retrospective analysis of the A/Ci curves from 109 species. J. Exp. Bot., 44 , 907920.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4 , 345364.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3023 2048 170
PDF Downloads 721 159 21