• Archer, S., D. S. Schimel, and E. A. Holland, 1995: Mechanisms of shrubland expansion: Land-use, climate or CO2. Climatic Change, 29 , 9199.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D. D., L. K. Xu, and N. Kiang, 2004: How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland. Agric. For. Meteor., 123 , 1339.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2004: Understanding hydrometeorology using global models. Bull. Amer. Meteor. Soc., 85 , 16731688.

  • Betts, A. K., and J. H. Ball, 1998: FIFE surface climate and site-average dataset 1987–89. J. Atmos. Sci., 55 , 10911108.

  • Bright, D. R., and S. L. Mullen, 2002: The sensitivity of the numerical simulation of the Southwest monsoon boundary layer to the choice of PBL turbulence parameterization in MM5. Wea. Forecasting, 17 , 99114.

    • Search Google Scholar
    • Export Citation
  • Brunsell, N. A., 2006: Characterization of land-surface precipitation feedback regimes with remote sensing. Remote Sens. Environ., 100 , 200211.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1975: Dynamics of deserts and drought in Sahel. Quart. J. Roy. Meteor. Soc., 101 , 193202.

  • Charney, J. G., W. J. Quirk, S. H. Chow, and J. Kornfield, 1977: Comparative study of effects of albedo change on drought in semi-arid regions. J. Atmos. Sci., 34 , 13661385.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and K. Mitchell, 1999: Using GEWEX/ISLSCP forcing data to simulate global soil moisture fields and hydrological cycle for 1987–1988. J. Meteor. Soc. Japan, 77 , 116.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129 , 587604.

    • Search Google Scholar
    • Export Citation
  • Courel, M. F., R. S. Kandel, and S. I. Rasool, 1984: Surface albedo and the Sahel drought. Nature, 307 , 528531.

  • Dall’Olmo, G., and A. Karnieli, 2002: Monitoring phenological cycles of desert ecosystems using NDVI and LST data derived from NOAA-AVHRR imagery. Int. J. Remote Sens., 23 , 40554071.

    • Search Google Scholar
    • Export Citation
  • deMenocal, P. B., 2001: Cultural responses to climate change during the Late Holocene. Science, 292 , 667673.

  • DePauw, E., 2004: Drought early warning systems for the Near East. Challenges and Strategies for Dryland Agriculture, S. C. Rao and J. Ryan, Eds., American Society of Agronomy and Crop Science Society of America, 93–111.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture rainfall feedback mechanism 1. Theory and observations. Water Resour. Res., 34 , 765776.

  • Evans, J. P., and R. Geerken, 2004: Discrimination between climate and human-induced dryland degradation. J. Arid Environ., 57 , 535554.

    • Search Google Scholar
    • Export Citation
  • Evans, J. P., and R. B. Smith, 2005: Classifying precipitation events in the Fertile Crescent. Preprints, 16th Conf. on Climate Variability and Change, San Diego, CA, Amer. Meteor. Soc., CD-ROM, 9.4.

  • Evans, J. P., and R. Geerken, 2006: Classifying rangeland vegetation type and coverage using a Fourier component based similarity measure. Int. J. Remote Sens., 105 , 18.

    • Search Google Scholar
    • Export Citation
  • FAO, 1997: Irrigation in the Near East region in figures. Water Reports 9, U.N. Food and Agriculture Organization, 292 pp. [Available online at http://www.fao.org/docrep/w4356e/w4356e00.htm.].

  • Geerken, R., and M. Ilaiwi, 2004: Assessment of rangeland degradation and development of a strategy for rehabilitation. Remote Sens. Environ., 90 , 490504.

    • Search Google Scholar
    • Export Citation
  • Geerken, R., N. Batikha, D. Celis, and E. Depauw, 2005a: Differentiation of rangeland vegetation and assessment of its status: Field investigations and MODIS and SPOT VEGETATION data analyses. Int. J. Remote Sens., 26 , 44994526.

    • Search Google Scholar
    • Export Citation
  • Geerken, R., B. Zaitchik, and J. P. Evans, 2005b: Classifying rangeland vegetation type and coverage from NDVI time series using Fourier filtered cycle similarity. Int. J. Remote Sens., 26 , 55355554.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, Boulder, CO, 117 pp.

  • Gutman, G., and A. Ignatov, 1998: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19 , 15331543.

    • Search Google Scholar
    • Export Citation
  • Heck, P., D. Luthi, and C. Schär, 1999: The influence of vegetation on the summertime evolution of European soil moisture. Phys. Chem. Earth, 24B , 609614.

    • Search Google Scholar
    • Export Citation
  • Hole, F., 1994: Environmental instabilities and urban origins. Chiefdoms and Early States in the Near East: the Organizational Dynamics of Complexity, Prehistory Press, 121–151.

  • Hong, S. Y., and H. L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Search Google Scholar
    • Export Citation
  • Jacquemin, B., and J. Noilhan, 1990: Sensitivity study and validation of a land surface parameterization using the HAPEX-MOBILHY data set. Bound.-Layer Meteor., 52 , 93134.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Kremer, R. G., E. R. Hunt, S. W. Running, and J. C. Coughlan, 1996: Simulating vegetational and hydrologic responses to natural climatic variation and GCM-predicted climate change in a semi-arid ecosystem in Washington, USA. J. Arid Environ., 33 , 2338.

    • Search Google Scholar
    • Export Citation
  • Lane, D. R., D. P. Coffin, and W. K. Lauenroth, 1998: Effects of soil texture and precipitation on above-ground net primary productivity and vegetation structure across the central grassland region of the United States. J. Veg. Sci., 9 , 239250.

    • Search Google Scholar
    • Export Citation
  • Laval, K., and L. Picon, 1986: Effect of a change of the surface albedo of the Sahel on climate. J. Atmos. Sci., 43 , 24182429.

  • LeHouerou, H. N., 1996: Climate change, drought and desertification. J. Arid Environ., 34 , 133185.

  • Liang, S. L., C. J. Shuey, A. L. Russ, H. L. Fang, M. Z. Chen, C. L. Walthall, C. S. T. Daughtry, and R. Hunt, 2002: Narrowband to broadband conversions of land surface albedo: II. Validation. Remote Sens. Environ., 84 , 2541.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 2002: An Introduction to Atmospheric Radiation. 2d ed. International Geophysics Series, Vol. 84, Academic Press, 583 pp.

  • Los, S. O., 1993: Calibration adjustment of the NOAA AVHRR normalized difference vegetation index without recourse to component channel-1 and channel-2 data. Int. J. Remote Sens., 14 , 19071917.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and M. Ek, 1984: The influence of atmospheric stability on potential evaporation. J. Climate Appl. Meteor., 23 , 222234.

  • Mahrt, L., and H. L. Pan, 1984: A two-layer model of soil hydrology. Bound.-Layer Meteor., 29 , 120.

  • Maisongrande, P., B. Duchemin, and G. Dedieu, 2004: VEGETATION/SPOT: An operational mission for the Earth monitoring; presentation of new standard products. Int. J. Remote Sens., 25 , 914.

    • Search Google Scholar
    • Export Citation
  • Matsui, T., V. Lakshmi, and E. E. Small, 2005: The effects of satellite-derived vegetation cover variability on simulated land–atmosphere interactions in the NAMS. J. Climate, 18 , 2140.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 , 1666316682.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., E. J. Highwood, K. P. Shine, and F. Stordal, 1998: New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett., 25 , 27152718.

    • Search Google Scholar
    • Export Citation
  • Nielsen, T. T., and H. K. Adriansen, 2005: Government policies and land degradation in the Middle East. Land Degradation Development, 16 , 151161.

    • Search Google Scholar
    • Export Citation
  • Pan, H. L., and L. Mahrt, 1987: Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteor., 38 , 185202.

  • Reisner, J., R. J. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124B , 10711107.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122 , 13851404.

  • Schaake, J. C., V. I. Koren, Q. Y. Duan, K. Mitchell, and F. Chen, 1996: A simple water balance model (SWB) for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101 , 74617475.

    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Luthi, U. Beyerle, and E. Heise, 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12 , 722741.

    • Search Google Scholar
    • Export Citation
  • Schär, C., P. L. Vidale, D. Luthi, C. Frei, C. Haberli, M. A. Liniger, and C. Appenzeller, 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427 , 332336.

    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and A. Karnieli, 2000: Remote sensing of the seasonal variability of vegetation in a semi-arid environment. J. Arid Environ., 45 , 4359.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Y. Mintz, 1982: Influence of land-surface evapo-transpiration on the earth’s climate. Science, 215 , 14981501.

  • Small, E. E., and S. A. Kurc, 2003: Tight coupling between soil moisture and the surface radiation budget in semiarid environments: Implications for land-atmosphere interactions. Water Resour. Res., 39 , 12781291.

    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., and M. Fennessy, 1982: A study of the influence of surface albedo on July circulation in semi-arid regions using the GLAS GCM. J. Climatol., 2 , 105125.

    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., and M. J. Fennessy, 1984: Influence of evaporation in semi-arid regions on the July circulation—A numerical study. J. Climatol., 4 , 383398.

    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., and W. E. Smith, 1985: The influence of surface-roughness of deserts on the July circulation (a numerical study). Bound.-Layer Meteor., 33 , 1549.

    • Search Google Scholar
    • Export Citation
  • Sud, Y. C., D. M. Mocko, K. M. Lau, and R. Atlas, 2003: Simulating the midwestern U.S. drought of 1988 with a GCM. J. Climate, 16 , 39463965.

    • Search Google Scholar
    • Export Citation
  • Vanacker, V., M. Linderman, F. Lupo, S. Flasse, and E. Lambin, 2005: Impact of short-term rainfall fluctuation on interannual land cover change in sub-Saharan Africa. Global Ecol. Biogeogr., 14 , 123135.

    • Search Google Scholar
    • Export Citation
  • Weiss, E., S. E. Marsh, and E. S. Pfirman, 2001: Application of NOAA-AVHRR NDVI time-series data to assess changes in Saudi Arabia’s rangelands. Int. J. Remote Sens., 22 , 10051027.

    • Search Google Scholar
    • Export Citation
  • Weiss, H., and R. S. Bradley, 2001: What drives societal collapse? Science, 291 , 609610.

  • Weiss, J. L., D. S. Gutzler, J. E. A. Coonrod, and C. N. Dahm, 2004: Long-term vegetation monitoring with NDVI in a diverse semi-arid setting, central New Mexico, USA. J. Arid Environ., 58 , 249272.

    • Search Google Scholar
    • Export Citation
  • Xie, P. P., and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9 , 840858.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., J. Evans, and R. B. Smith, 2005: MODIS-derived boundary conditions for a mesoscale climate model: Application to irrigated agriculture in the Euphrates basin. Mon. Wea. Rev., 133 , 17271743.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., A. K. Macalady, L. R. Bonneau, and R. B. Smith, 2006: Europe’s 2003 heat wave: A satellite view of impacts and land–atmosphere feedbacks. Int. J. Climatol., 26 , 743769.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., E. Torlaschi, and R. Sauvageau, 1981: The relationship between mesoscale thermodynamic variables and convective precipitation. J. Atmos. Sci., 38 , 15351540.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., A. Henderson-Sellers, A. J. Pitman, J. L. McGregor, C. E. Desborough, and J. J. Katzfey, 2001: Limited-area model sensitivity to the complexity of representation of the land surface energy balance. J. Climate, 14 , 39653986.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y. Q., G. Yu, Y. F. Qian, M. Q. Miao, X. M. Zeng, and H. Q. Liu, 2002: Simulations of regional climatic effects of vegetation change in China. Quart. J. Roy. Meteor. Soc., 128 , 20892114.

    • Search Google Scholar
    • Export Citation
  • Ziv, B., H. Saaroni, and P. Alpert, 2004: The factors governing the summer regime of the eastern Mediterranean. Int. J. Climatol., 24 , 18591871.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 30 30 30
PDF Downloads 18 18 18

Climate and Vegetation in the Middle East: Interannual Variability and Drought Feedbacks

View More View Less
  • 1 Department of Geology and Geophysics, Yale University, New Haven, Connecticut
Restricted access

Abstract

The Euphrates Plain (EP) experiences large interannual variability in vegetation cover, especially in areas of marginal rain-fed agriculture. Vegetation in this region is primarily limited by available soil moisture, as determined by winter precipitation, spring precipitation, and air temperature. Satellite analyses indicate that the springtime normalized difference vegetation index (NDVI) is negatively correlated with surface albedo, and that interannual variability in albedo in the EP produces an estimated forcing on the radiation balance that peaks at 16.0 W m−2 in May.

Simulations with a regional climate model indicate that surface energy fluxes during a drought year (1999) differed substantially from those during a year with normal precipitation (2003). These differences were geographically specific, with the EP exhibiting increased albedo and decreased sensible heat flux while the neighboring Zagros Plateau region showed no albedo effect, a large increase in sensible heat flux, and an offsetting reduction in latent heat flux. In both the EP and the Zagros there was a potential for positive feedbacks on temperature and drought in late spring, though the most likely feedback mechanisms differed between the two regions: in the EP surface brightening leads to cooling and reduced turbulent heat flux, while in the Zagros region reduced latent heat flux leads to warming and a deepening of the planetary boundary layer.

* Current affiliation: Hydrologic Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland

Corresponding author address: Benjamin F. Zaitchik, Hydrologic Sciences Branch, NASA Goddard Space Flight Center, Code 614.3, Greenbelt, MD 20771. Email: bzaitchik@hsb.gsfc.nasa.gov

Abstract

The Euphrates Plain (EP) experiences large interannual variability in vegetation cover, especially in areas of marginal rain-fed agriculture. Vegetation in this region is primarily limited by available soil moisture, as determined by winter precipitation, spring precipitation, and air temperature. Satellite analyses indicate that the springtime normalized difference vegetation index (NDVI) is negatively correlated with surface albedo, and that interannual variability in albedo in the EP produces an estimated forcing on the radiation balance that peaks at 16.0 W m−2 in May.

Simulations with a regional climate model indicate that surface energy fluxes during a drought year (1999) differed substantially from those during a year with normal precipitation (2003). These differences were geographically specific, with the EP exhibiting increased albedo and decreased sensible heat flux while the neighboring Zagros Plateau region showed no albedo effect, a large increase in sensible heat flux, and an offsetting reduction in latent heat flux. In both the EP and the Zagros there was a potential for positive feedbacks on temperature and drought in late spring, though the most likely feedback mechanisms differed between the two regions: in the EP surface brightening leads to cooling and reduced turbulent heat flux, while in the Zagros region reduced latent heat flux leads to warming and a deepening of the planetary boundary layer.

* Current affiliation: Hydrologic Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland

Corresponding author address: Benjamin F. Zaitchik, Hydrologic Sciences Branch, NASA Goddard Space Flight Center, Code 614.3, Greenbelt, MD 20771. Email: bzaitchik@hsb.gsfc.nasa.gov

Save