Midlatitude Wind Stress–Sea Surface Temperature Coupling in the Vicinity of Oceanic Fronts

Michael A. Spall Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Michael A. Spall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The influences of strong gradients in sea surface temperature on near-surface cross-front winds are explored in a series of idealized numerical modeling experiments. The atmospheric model is the Naval Research Laboratory Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) model, which is fully coupled to the Regional Ocean Modeling System (ROMS) ocean model. A series of idealized, two-dimensional model calculations is carried out in which the wind blows from the warm-to-cold side or the cold-to-warm side of an initially prescribed ocean front. The evolution of the near-surface winds, boundary layer, and thermal structure is described, and the balances in the momentum equation are diagnosed. The changes in surface winds across the front are consistent with previous models and observations, showing a strong positive correlation with the sea surface temperature and boundary layer thickness. The coupling arises mainly as a result of changes in the flux Richardson number across the front, and the strength of the coupling coefficient grows quadratically with the strength of the cross-front geostrophic wind. The acceleration of the winds over warm water results primarily from the rapid change in turbulent mixing and the resulting unbalanced Coriolis force in the vicinity of the front. Much of the loss/gain of momentum perpendicular to the front in the upper and lower boundary layer results from acceleration/deceleration of the flow parallel to the front via the Coriolis term. This mechanism is different from the previously suggested processes of downward mixing of momentum and adjustment to the horizontal pressure gradient, and is active for flows off the equator with sufficiently strong winds. Although the main focus of this work is on the midlatitude, strong wind regime, calculations at low latitudes and with weak winds show that the pressure gradient and turbulent mixing terms dominate the cross-front momentum budget, consistent with previous work.

Corresponding author address: Michael A. Spall, Department of Physical Oceanography, Woods Hole Oceanographic Institute, MS #21, 360 Woods Hole Road, Woods Hole, MA 02543. Email: mspall@whoi.edu

Abstract

The influences of strong gradients in sea surface temperature on near-surface cross-front winds are explored in a series of idealized numerical modeling experiments. The atmospheric model is the Naval Research Laboratory Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) model, which is fully coupled to the Regional Ocean Modeling System (ROMS) ocean model. A series of idealized, two-dimensional model calculations is carried out in which the wind blows from the warm-to-cold side or the cold-to-warm side of an initially prescribed ocean front. The evolution of the near-surface winds, boundary layer, and thermal structure is described, and the balances in the momentum equation are diagnosed. The changes in surface winds across the front are consistent with previous models and observations, showing a strong positive correlation with the sea surface temperature and boundary layer thickness. The coupling arises mainly as a result of changes in the flux Richardson number across the front, and the strength of the coupling coefficient grows quadratically with the strength of the cross-front geostrophic wind. The acceleration of the winds over warm water results primarily from the rapid change in turbulent mixing and the resulting unbalanced Coriolis force in the vicinity of the front. Much of the loss/gain of momentum perpendicular to the front in the upper and lower boundary layer results from acceleration/deceleration of the flow parallel to the front via the Coriolis term. This mechanism is different from the previously suggested processes of downward mixing of momentum and adjustment to the horizontal pressure gradient, and is active for flows off the equator with sufficiently strong winds. Although the main focus of this work is on the midlatitude, strong wind regime, calculations at low latitudes and with weak winds show that the pressure gradient and turbulent mixing terms dominate the cross-front momentum budget, consistent with previous work.

Corresponding author address: Michael A. Spall, Department of Physical Oceanography, Woods Hole Oceanographic Institute, MS #21, 360 Woods Hole Road, Woods Hole, MA 02543. Email: mspall@whoi.edu

Save
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of the nocturnal inversion. Bull. Amer. Meteor. Soc., 38 , 283290.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67 , 10061015.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14 , 14791498.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303 , 978983.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., and C. S. Bretherton, 2004: Quasi-Lagrangian large eddy simulations of cross-equatorial flow in the East Pacific atmospheric boundary layer. J. Atmos. Sci., 61 , 18371858.

    • Search Google Scholar
    • Export Citation
  • Hashizume, H., S-P. Xie, M. Fujiwara, M. Shiotani, T. Watanabe, Y. Tanimoto, W. T. Liu, and K. Takeuchi, 2002: Direct observations of atmospheric boundary layer response to SST variations associated with tropical instability waves over the eastern equatorial Pacific. J. Climate, 15 , 33793393.

    • Search Google Scholar
    • Export Citation
  • Hayes, S. P., M. J. McPhaden, and J. M. Wallace, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Weekly to monthly variability. J. Climate, 2 , 15001506.

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125 , 14141430.

    • Search Google Scholar
    • Export Citation
  • Jury, M. R., and N. Walker, 1988: Marine boundary layer modification across the edge of the Agulhas Current. J. Geophys. Res., 93 , 647654.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the Tropics. J. Atmos. Sci., 44 , 24182436.

    • Search Google Scholar
    • Export Citation
  • Louis, J-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17 , 187202.

  • Mahrt, L., D. Vickets, and E. Moore, 2004: Flow adjustments across sea-surface temperature changes. Bound.-Layer Meteor., 111 , 553564.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20 , 851875.

    • Search Google Scholar
    • Export Citation
  • Nonaka, M., and S-P. Xie, 2003: Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean-to-atmosphere feedback. J. Climate, 16 , 14041413.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2003: Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. J. Climate, 16 , 23402354.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, S. K. Esbensen, and F. J. Wentz, 2005: High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. J. Climate, 18 , 27062723.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Spinger-Verlag, 710 pp.

  • Perlin, N., E. D. Skyllingstad, R. M. Samelson, and P. L. Barbour, 2007: Numerical simulation of air–sea coupling during coastal upwelling. J. Phys. Oceanogr., in press.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., E. D. Skyllingstad, D. B. Chelton, S. K. Esbensen, L. W. O’Neill, and N. Thum, 2006: On the coupling of wind stress and sea surface temperature. J. Climate, 19 , 15571566.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Ocean Modeling System (ROMS): A split-explicit, free surface, topography-following coordinate ocean model. Ocean Modell., 9 , 347404.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., R. Samelson, L. Mahrt, and P. Barbour, 2005: A numerical modeling study of warm offshore flow over cool water. Mon. Wea. Rev., 133 , 345361.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., D. Vickers, L. Mahrt, and R. Samelson, 2006: Effects of mesoscale sea-surface temperature fronts on the marine atmospheric boundary layer. Bound.-Layer Meteor., 123 , 219237.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., S-P. Xie, and Y. Wang, 2003: Numerical simulation of atmospheric response to Pacific tropical instability waves. J. Climate, 16 , 37233741.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., S-P. Xie, Y. Wang, S. K. Esbensen, and D. Vickers, 2005: Numerical simulation of boundary layer structure and cross-equatorial flow in the eastern Pacific. J. Atmos. Sci., 62 , 18121830.

    • Search Google Scholar
    • Export Citation
  • Smedman, A-S., H. Bergström, and B. Grisogono, 1997: Evolution of stable internal boundary layers over a cold sea. J. Geophys. Res., 102 , 10911100.

    • Search Google Scholar
    • Export Citation
  • Song, Q., P. Cornillon, and T. Hara, 2006: Surface wind response to oceanic fronts. J. Geophys. Res., 111 .C12006, doi:10.1029/2006JC003680.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Sweet, W., R. Fett, J. Kerling, and P. LaViolette, 1981: Air–sea interaction effects in the lower troposphere across the north wall of the Gulf Stream. Mon. Wea. Rev., 109 , 10421052.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 367 pp.

  • Vecchi, G. A., S-P. Xie, and A. S. Fischer, 2004: Ocean–atmosphere covariability in the western Arabian Sea. J. Climate, 17 , 12131224.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 2006: Evaluation of the air-sea bulk formula and sea-surface temperature variability from observations. J. Geophys. Res., 111 .C05002, doi:10.1029/2005JC003323.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2 , 14921499.

    • Search Google Scholar
    • Export Citation
  • Xie, S-P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85 , 195208.

  • Xie, S-P., W. T. Liu, Q. Liu, and M. Nonaka, 2001: Far-reaching effects of the Hawaiian Islands on the Pacific ocean–atmosphere system. Science, 292 , 20572060.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1544 845 54
PDF Downloads 562 157 26