• Ambrizzi, T., B. J. Hoskins, and H-H. Hsu, 1995: Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci., 52 , 36613672.

    • Search Google Scholar
    • Export Citation
  • Chang, C-P., Y. Zhang, and T. Li, 2000a: Interannual and interdecadal variation of the East Asian summer monsoon and the tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13 , 43104325.

    • Search Google Scholar
    • Export Citation
  • Chang, C-P., Y. Zhang, and T. Li, 2000b: Interannual and interdecadal variation of the East Asian summer monsoon and the tropical Pacific SSTs. Part II: Meridional structure of the monsoon. J. Climate, 13 , 43264340.

    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129 , 157178.

    • Search Google Scholar
    • Export Citation
  • Guan, Z., and T. Yamagata, 2003: The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett., 30 .1544, doi:10.1029/2002GL016831.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 , 447462.

  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10 , 17691786.

    • Search Google Scholar
    • Export Citation
  • Honda, M., K. Yamzaki, H. Nakamura, and K. Takeushi, 1999: Dynamic and thermodynamic characteristics of atmospheric response to anomalous sea-ice extent in the Sea of Okhotsk. J. Climate, 12 , 33473358.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38 , 11791196.

    • Search Google Scholar
    • Export Citation
  • Hsu, H-H., and X. Liu, 2003: Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall. Geophys. Res. Lett., 30 .2066, doi:10.1029/2003GL017909.

    • Search Google Scholar
    • Export Citation
  • Huang, R. H., and F. Y. Sun, 1992: Impacts of the tropical western Pacific on the East Asia summer monsoon. J. Meteor. Soc. Japan, 70 , 243256.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific-Japan (PJ) teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132 , 20092030.

    • Search Google Scholar
    • Export Citation
  • Kurihara, K., and T. Tsuyuki, 1987: Development of the barotropic high around Japan and its association with Rossby wave-like propagations over the North Pacific: Analysis of August 1984. J. Meteor. Soc. Japan, 65 , 237246.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., 1992: The East Asian summer monsoon rainfall variability and climate teleconnection. J. Meteor. Soc. Japan, 70 , 211241.

  • Lau, K-M., and H. Weng, 2001: Coherent modes of global SST and summer rainfall over China: An assessment of the regional impacts of the 1997–98 El Niño. J. Climate, 14 , 12941308.

    • Search Google Scholar
    • Export Citation
  • Lau, K-M., K-M. Kim, and S. Yang, 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate, 13 , 24612482.

    • Search Google Scholar
    • Export Citation
  • Liu, X., W. Li, and G. Wu, 2002: Interannual variation of the diabatic heating over the Tibetan plateau and the Northern Hemispheric circulation in summer. Acta Meteor. Sin., 60 , 3. 267277.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 , 2442.

  • Mitchell, T. D., T. R. Carter, P. D. Jones, M. Hulme, and M. New, 2004: A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre Working Paper 55, 30 pp.

  • Newman, M., P. D. Sardeshmukh, and C. Penland, 1997: Stochastic forcing of the wintertime extratropical flow. J. Atmos. Sci., 54 , 435455.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., 1994: On the dynamical basis for the Asian summer monsoon rainfall–El Niño relationship. J. Climate, 7 , 17501771.

  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65 , 373390.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., and Z-Z. Hu, 1996: Summer climate variability in China and its association with 500-hPa height and tropical convection. J. Meteor. Soc. Japan, 74 , 425445.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110 , 354384.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., E. B. Horton, D. E. Parker, C. K. Folland, and R. B. Hackett, 1996: Version 2.2 of the Global Sea-Ice and Sea Surface Temperature data set, 1903–1994. CRTN 74, Hadley Centre, Met Office, 47 pp.

  • Shen, S., and K-M. Lau, 1995: Biennial oscillation associated with the East Asian summer monsoon and tropical sea surface temperature. J. Meteor. Soc. Japan, 73 , 105124.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40 , 13631392.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 1997: A formulation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow. Geophys. Res. Lett., 24 , 29852988.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58 , 608627.

    • Search Google Scholar
    • Export Citation
  • Tao, S., and L. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.

    • Search Google Scholar
    • Export Citation
  • Tian, S-F., and T. Yasunari, 1992: Time and space structure of interannual variations in summer rainfall over China. J. Meteor. Soc. Japan, 70 , 585596.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131 , 29613012.

  • Webster, P., 1972: Response of the tropical atmosphere to local, steady forcing. Mon. Wea. Rev., 100 , 517540.

  • Weng, H., K-M. Lau, and Y. Xue, 1999: Multi-scale summer rainfall variability over China and its long-term link to global sea surface temperature variability. J. Meteor. Soc. Japan, 77 , 845857.

    • Search Google Scholar
    • Export Citation
  • Wu, G., L. Sun, Y. Liu, H. Liu, S. Sun, and W. Li, 2002: Impacts of land surface processes on summer climate. Selected Papers of the Fourth Conference on East Asia and Western Pacific Meteorology and Climate, C.-P. Chang et al., Eds., World Scientific, 64–76.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30 , 611627.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7 7 7
PDF Downloads 8 8 8

Asymmetry of the Tripole Rainfall Pattern during the East Asian Summer

View More View Less
  • 1 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
Restricted access

Abstract

This study investigates the tripole rainfall pattern in East Asia during the northern summer. The tripole pattern is characterized by a zonally elongated and meridionally banded structure with signs changing alternatively from 20° to 50°N along the East Asian coast. The positive (negative) phase of the pattern is characterized by more (less) rainfall in central-eastern China, Japan, and South Korea, and less (more) rainfall in northern and southern China. Asymmetry between the positive and negative phases is one of the key findings of this study. The tripole pattern is closely associated with two wavelike patterns: the Pacific–Japan pattern and the Silk Road pattern. The former, which emanates from the tropical western Pacific to extratropical East Asia, is more evident in the positive phase, while the latter, emanating across the Eurasian continent, is more evident in the negative phase. The positive phase appears to have a stronger tropical connection, while the negative phase has a stronger extratropical connection. The positive and negative phases are associated with the positive and negative SSTA in the equatorial eastern Pacific, respectively. It is suggested that in the positive phase the zonally oriented overturning circulation driven by the positive SSTA in the equatorial eastern Pacific induces heating anomalies in the tropical western Pacific, which in turn triggers a wavelike pattern emanating northward toward extratropical East Asia. This indirect SSTA effect is not evident in the negative phase, which is predominantly affected by the extratropical Eurasian wavelike perturbations. On the other hand, anomalous heating over the eastern Tibetan Plateau seems to induce the eastward-propagating wavelike structure in both phases. It is suggested that the tripole pattern is a result of the amplification of an intrinsic dynamic mode that can be triggered by various factors despite their different origins.

Corresponding author address: Huang-Hsiung Hsu, Department of Atmospheric Sciences, National Taiwan University, 1, Section4, Roosevelt Rd., Taipei 106, Taiwan. Email: hsu@atmos1.as.ntu.edu.tw

Abstract

This study investigates the tripole rainfall pattern in East Asia during the northern summer. The tripole pattern is characterized by a zonally elongated and meridionally banded structure with signs changing alternatively from 20° to 50°N along the East Asian coast. The positive (negative) phase of the pattern is characterized by more (less) rainfall in central-eastern China, Japan, and South Korea, and less (more) rainfall in northern and southern China. Asymmetry between the positive and negative phases is one of the key findings of this study. The tripole pattern is closely associated with two wavelike patterns: the Pacific–Japan pattern and the Silk Road pattern. The former, which emanates from the tropical western Pacific to extratropical East Asia, is more evident in the positive phase, while the latter, emanating across the Eurasian continent, is more evident in the negative phase. The positive phase appears to have a stronger tropical connection, while the negative phase has a stronger extratropical connection. The positive and negative phases are associated with the positive and negative SSTA in the equatorial eastern Pacific, respectively. It is suggested that in the positive phase the zonally oriented overturning circulation driven by the positive SSTA in the equatorial eastern Pacific induces heating anomalies in the tropical western Pacific, which in turn triggers a wavelike pattern emanating northward toward extratropical East Asia. This indirect SSTA effect is not evident in the negative phase, which is predominantly affected by the extratropical Eurasian wavelike perturbations. On the other hand, anomalous heating over the eastern Tibetan Plateau seems to induce the eastward-propagating wavelike structure in both phases. It is suggested that the tripole pattern is a result of the amplification of an intrinsic dynamic mode that can be triggered by various factors despite their different origins.

Corresponding author address: Huang-Hsiung Hsu, Department of Atmospheric Sciences, National Taiwan University, 1, Section4, Roosevelt Rd., Taipei 106, Taiwan. Email: hsu@atmos1.as.ntu.edu.tw

Save