• Baran, A. J., 2003: Simulation of infrared scattering from ice aggregates using a size/shape distribution of ice cylinders. Appl. Opt., 42 , 28112818.

    • Search Google Scholar
    • Export Citation
  • Baran, A. J., P. N. Francis, L. C. Labonnote, and M. Doutriaux-Boucher, 2001: A scattering phase function for ice cloud: Tests of applicability using aircraft and satellite multi-angle multi-wavelength radiance measurements of cirrus. Quart. J. Roy. Meteor. Soc., 127 , 23952416.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and K. A. Emanuel, 2001: A parameterization of the cloudiness associated with cumulus convection: Evaluation using TOGA COARE Data. J. Atmos. Sci., 58 , 31583183.

    • Search Google Scholar
    • Export Citation
  • Boudala, F. S., G. A. Isaac, Q. Fu, and S. G. Cober, 2002: Parameterization of effective ice particle size for high-latitude clouds. Int. J. Climatol., 22 , 12671284.

    • Search Google Scholar
    • Export Citation
  • Bréon, F-M., 1992: Reflectances of broken cloud fields: Simulation and parameterization. J. Atmos. Sci., 49 , 12211232.

  • Briand, V., 2000: Vers une meilleure exploitation des observations satellitales pour l’étude de l’ effet radiatif des nuages. Ph.D. thesis, University of Paris VI, 129 pp. [Available from C. J. Stubenrauch, LMD, Ecole Polytechnique, F-91128 Palaiseau CEDEX, France.].

  • Chédin, A., N. A. Scott, C. Wahiche, and P. Moulinier, 1985: The improved initialization inversion method: A high resolution physical method for temperature retrievals from satellites of the TIROS-N series. J. Climate Appl. Meteor., 24 , 128143.

    • Search Google Scholar
    • Export Citation
  • Chevallier, F., F. Cheruy, N. A. Scott, and A. Chédin, 1998: A neural network approach for a fast and accurate computation of longwave radiative budget. J. Appl. Meteor., 37 , 13851397.

    • Search Google Scholar
    • Export Citation
  • Cusack, S., J. M. Edwards, and J. M. Crowther, 1999: Investigating k distribution methods for parameterizing gaseous absorption in the Hadley Centre Climate Model. J. Geophys. Res., 104 , 20512057.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., C. J. Seman, B. J. Soden, R. S. Hemler, J. C. Warren, J. Ström, and K-N. Liou, 1997: Large-scale ice clouds in the GFDL SKYHI general circulation model. J. Geophys. Res., 102 , 2174521768.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code: I. Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122 , 689719.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., S. Havemann, J-C. Thelen, and A. J. Baran, 2007: A new Parameterization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCM. Atmos. Res., 83 , 1934.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., 1996: An accuarate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9 , 20582082.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., P. Yang, and W. B. Sun, 1998: An accurate parameterization of the infrared radiative properties of cirrus clouds in climate models. J. Climate, 11 , 22232237.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., H. Gerber, D. G. Baumgardner, C. H. Twohy, and E. M. Weinstock, 2003: Small, highly reflective ice crystals in low-latitude cirrus. Geophys. Res. Lett., 30 .2132, doi:10.1029/2003GL018153.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1977: Precipitation development in stratiform ice clouds: A microphysical and dynamic study. J. Atmos. Sci., 34 , 367381.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and C. M. R. Platt, 1984: A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content. J. Atmos. Sci., 41 , 846855.

    • Search Google Scholar
    • Export Citation
  • Ivanova, D., D. L. Mitchll, W. P. Arnott, and M. Poellot, 2001: A GCM parameterization for bimodal size spectra and ice mass removal rates in mid-latitude cirrus clouds. Atmos. Res., 59–60 , 89113.

    • Search Google Scholar
    • Export Citation
  • Kandel, R. S., and Coauthors, 1998: The ScaRaB earth radiation budget dataset. Bull. Amer. Meteor. Soc., 79 , 765783.

  • Key, J., and A. Schweiger, 1998: Tools for atmospheric radiative transfer: Streamer and FluxNet. Comput. Geosci., 24 , 443451.

  • Korolev, A. V., G. A. Isaac, I. P. Mazin, and H. W. Baker, 2001: Microphysical properties of continental clouds from in-situ measurements. Quart. J. Roy. Meteor. Soc., 127 , 21172151.

    • Search Google Scholar
    • Export Citation
  • Kristjânsson, J-E., J. M. Edwards, and D. L. Mitchell, 2000: The impact of a new scheme for the optical properties of ice crystals on the climates of two GCMs. J. Geophys. Res., 105 , 1006310079.

    • Search Google Scholar
    • Export Citation
  • Li, Z., and A. Trishchenko, 1999: A study towards an improved understanding of the relationship between visible and shortwave measurements. J. Atmos. Oceanic Technol., 16 , 347360.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., F. Parol, J-C. Buriez, and C. Vanbauce, 2000: Top-of-atmosphere albedo estimation from angular distribution models using scene identification from satellite cloud property retrievals. J. Climate, 13 , 12691285.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., K. Loukachine, N. Manalo-Smith, B. A. Wielicki, and D. F. Young, 2003: Validation of the top-of-atmosphere short- and longwave radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the tropical rainfall Measuring Mission satellite. Part II: Validation. J. Appl. Meteor., 42 , 17481769.

    • Search Google Scholar
    • Export Citation
  • Loukachine, K., and N. G. Loeb, 2003: Application of an artificial neural network simulation for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System (CERES). J. Atmos. Oceanic Technol., 20 , 17491757.

    • Search Google Scholar
    • Export Citation
  • Macke, A., R. Dlhopolsky, J. Mueller, R. Stuhlmann, and E. Raschke, 1995: A study on bidirectional reflection functions for broken cloud fields over ocean. Adv. Space Res., 16 , 5058.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., G. J. Boer, J. P. Blanchet, and M. Lazare, 1992: The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J. Climate, 5 , 10131044.

    • Search Google Scholar
    • Export Citation
  • McFarquar, G. M., and A. J. Heymsfield, 1996: Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment (CEPEX). J. Atmos. Sci., 53 , 24012423.

    • Search Google Scholar
    • Export Citation
  • McPeters, R. D., D. F. Heath, and P. K. Bhartia, 1984: Average ozone profiles for 1979 from the NIMBUS-7 SBUV instrument. J. Geophys. Res., 89 , 51995214.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., P. W. Heck, and D. F. Young, 1993: Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. Part II: Verification of theoretical cirrus radiative properties. J. Atmos. Sci., 50 , 13051322.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 1991: Light scattering by randomly oriented axially symmetric particles. J. Opt. Soc. Amer., 8A , 871882.

  • Mitchell, D. L., A. Macke, and Y. Liu, 1996: Modeling cirrus clouds. Part II: Treatment of radiative properties. J. Atmos. Sci., 53 , 29672988.

    • Search Google Scholar
    • Export Citation
  • Nussenzveig, H. M., and W. J. Wiscombe, 1980: Efficiency factors in Mie scattering. Phys. Rev. Lett., 45 , 14901493.

  • Rädel, G., C. J. Stubenrauch, R. Holz, and D. L. Mitchell, 2003: Retrieval of effective ice crystal size in the infrared: Sensitivity study and global measurements from the TIROS-N Operational Vertical Sounder. J. Geophys. Res., 108 .4281, doi:10.1029/2002JD002801.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612287.

  • Rossow, W. B., A. W. Walker, D. Beuschel, and M. Roiter, 1996: International Satellite Cloud Climatology Project (ISCCP): Description of new cloud datasets. WMO/TD-No.737, World Climate Research Programme (ICSU and WMO), Geneva, Switzerland, 115 pp.

  • Schlimme, I., A. Macke, and J. Reichardt, 2005: The impact of ice crystal shapes, size distributions, and spatial structures of cirrus clouds on solar radiative fluxes. J. Atmos. Sci., 62 , 22742283.

    • Search Google Scholar
    • Export Citation
  • Scott, N. A., and Coauthors, 1999: Characteristics of the TOVS Pathfinder Path-B dataset. Bull. Amer. Meteor. Soc., 80 , 26792701.

  • Stith, J. L., J. E. Dye, A. Bansemer, A. J. Heymsfield, C. A. Grainger, W. A. Petersen, and R. Cifelli, 2002: Microphysical observations of tropical clouds. J. Appl. Meteor., 41 , 97117.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., G. Sèze, N. A. Scott, A. Chédin, M. Desbois, and R. S. Kandel, 1996: Cloud field identification for Earth Radiation Budget studies. Part II: Cloud field classification for the ScaRaB radiometer. J. Appl. Meteor., 35 , 428443.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., A. Chédin, R. Armante, and N. A. Scott, 1999a: Clouds as seen by infrared sounders (3I) and imagers (ISCCP). Part II: A new approach for cloud parameter determination in the 3I algorithms. J. Climate, 12 , 22142223.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., W. B. Rossow, N. A. Scott, and A. Chédin, 1999b: Clouds as seen by infrared sounders (3I) and imagers (ISCCP). Part III: Spatial heterogeneity and radiative effects. J. Climate, 12 , 34193442.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., V. Briand, and W. B. Rossow, 2002: The role of clear-sky identification in the study of cloud radiative effects: Combined analysis from ISCCP and the Scanner of Radiation Budget. J. Appl. Meteor., 41 , 396412.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., F. Eddounia, and G. Rädel, 2004: Correlations between microphysical properties of large-scale semi-transparent cirrus and the state of the atmosphere. Atmos. Res., 72 , 403423.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., F. Eddounia, and L. Sauvage, 2005: Cloud heights from TOVS Path-B: Evaluation using LITE observations and distributions of highest cloud layers. J. Geophys. Res., 110 .D19203, doi:10.1029/2004JD005447.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., A. Chédin, G. Rädel, N. A. Scott, and S. Serrar, 2006: Cloud properties and their seasonal and diurnal variability from TOVS Path-B. J. Climate, 19 , 55315553.

    • Search Google Scholar
    • Export Citation
  • Suttles, J. T., B. A. Wielicki, and S. Vemury, 1992: Top-of-atmosphere radiative fluxes: Validation of ERBE scanner inversion algorithm using Nimbus-7 ERB data. J. Appl. Meteor., 31 , 784796.

    • Search Google Scholar
    • Export Citation
  • Van de Hulst, H. C., 1957: Light Scattering by Small Particles. Wiley, 470 pp.

  • Viollier, M., R. S. Kandel, and P. Raberanto, 1995: Inversion and space-time averaging algorithms for ScaRaB (Scanner for Earth Radiation Budget) comparison with ERBE. Ann. Geophys., 13 , 959968.

    • Search Google Scholar
    • Export Citation
  • Volkovitskiy, O. A., L. N. Pavlova, and A. G. Petrushin, 1980: Scattering of light by ice crystals. Atmos. Ocean Phys., 16 , 90102.

  • Wylie, D. P., and W. P. Menzel, 1999: Eight years of cloud statistics using HIRS. J. Climate, 12 , 170184.

  • Yang, P., and K. N. Liou, 1996: Geometric-optics-integral-equation method for light scattering by non-spherical ice crystals. Appl. Opt., 35 , 65686584.

    • Search Google Scholar
    • Export Citation
  • Yang, P., and K. N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contrib. Atmos. Phys., 71 , 223248.

    • Search Google Scholar
    • Export Citation
  • Zdunkowski, W. G., R. M. Welch, and G. Korb, 1980: An investigation of the structure of typical two-stream methods for the calculation of solar fluxes and heating rates in clouds. Beitr. Phys., 53 , 147166.

    • Search Google Scholar
    • Export Citation
  • Zell, A., and Coauthors, 1995: Stuttgart Neural Network Simulator (SNNS) user manual, version 4.1. University of Stuttgart, 312 pp. [Available online at http://www-ra.informatik.uni-tuebingen.de/SNNS/.].

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 0 0 0
PDF Downloads 2 2 2

Evaluation of Cirrus Parameterizations for Radiative Flux Computations in Climate Models Using TOVS–ScaRaB Satellite Observations

View More View Less
  • 1 CNRS/IPSL Laboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau, France
  • | 2 Met Office, Exeter, United Kingdom
  • | 3 Institute for Marine Research, Kiel, Germany
Restricted access

Abstract

Combined simultaneous satellite observations are used to evaluate the performance of parameterizations of the microphysical and optical properties of cirrus clouds used for radiative flux computations in climate models. Atmospheric and cirrus properties retrieved from Television and Infrared Observation Satellite (TIROS-N) Operational Vertical Sounder (TOVS) observations are given as input to the radiative transfer model developed for the Met Office climate model to simulate radiative fluxes at the top of the atmosphere (TOA). Simulated cirrus shortwave (SW) albedos are then compared to those retrieved from collocated Scanner for Radiation Budget (ScaRaB) observations. For the retrieval, special care has been given to angular direction models. Three parameterizations of cirrus ice crystal optical properties are represented in the Met Office radiative transfer model. These parameterizations are based on different physical approximations and different hypotheses on crystal habit. One parameterization assumes pristine ice crystals and two ice crystal aggregates. By relating the cirrus ice water path (IWP) retrieved from the effective infrared emissivity to the cirrus SW albedo, differences between the parameterizations are amplified. This study shows that pristine crystals seem to be plausible only for cirrus with IWP less than 30 g m−2. For larger IWP, ice crystal aggregates lead to cirrus SW albedos in better agreement with the observations. The data also indicate that climate models should allow the cirrus effective ice crystal diameter (De) to increase with IWP, especially in the range up to 30 g m−2. For cirrus with IWP less than 20 g m−2, this would lead to SW albedos that are about 0.02 higher than the ones of a constant De of 55 μm.

Corresponding author address: Claudia J. Stubenrauch, CNRS/IPSL Laboratoire de Météorologie Dynamique, Ecole Polytechnique, F-91128 Palaiseau CEDEX, France. Email: stubenrauch@lmd.polytechnique.fr

Abstract

Combined simultaneous satellite observations are used to evaluate the performance of parameterizations of the microphysical and optical properties of cirrus clouds used for radiative flux computations in climate models. Atmospheric and cirrus properties retrieved from Television and Infrared Observation Satellite (TIROS-N) Operational Vertical Sounder (TOVS) observations are given as input to the radiative transfer model developed for the Met Office climate model to simulate radiative fluxes at the top of the atmosphere (TOA). Simulated cirrus shortwave (SW) albedos are then compared to those retrieved from collocated Scanner for Radiation Budget (ScaRaB) observations. For the retrieval, special care has been given to angular direction models. Three parameterizations of cirrus ice crystal optical properties are represented in the Met Office radiative transfer model. These parameterizations are based on different physical approximations and different hypotheses on crystal habit. One parameterization assumes pristine ice crystals and two ice crystal aggregates. By relating the cirrus ice water path (IWP) retrieved from the effective infrared emissivity to the cirrus SW albedo, differences between the parameterizations are amplified. This study shows that pristine crystals seem to be plausible only for cirrus with IWP less than 30 g m−2. For larger IWP, ice crystal aggregates lead to cirrus SW albedos in better agreement with the observations. The data also indicate that climate models should allow the cirrus effective ice crystal diameter (De) to increase with IWP, especially in the range up to 30 g m−2. For cirrus with IWP less than 20 g m−2, this would lead to SW albedos that are about 0.02 higher than the ones of a constant De of 55 μm.

Corresponding author address: Claudia J. Stubenrauch, CNRS/IPSL Laboratoire de Météorologie Dynamique, Ecole Polytechnique, F-91128 Palaiseau CEDEX, France. Email: stubenrauch@lmd.polytechnique.fr

Save