• Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in the hydrological cycle. Nature, 419 , 224228.

  • Alory, G., S. Wijffels, and G. Meyers, 2007: Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett., 34 .L02606, doi:10.1029/2006GL028044.

    • Search Google Scholar
    • Export Citation
  • An, S-I., and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on ENSO frequency. J. Climate, 13 , 20442055.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1998: Climate-convection feedbacks: Some further issues. Climatic Change, 39 , 3538.

  • Betts, A. K., and W. Ridgway, 1989: Climatic equilibrium of the atmospheric convective boundary layer over a tropical ocean. J. Atmos. Sci., 46 , 26212641.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. C. Pacanowski, S. G. H. Philander, and A. V. Fedorov, 2004: The thermal structure of the upper ocean. J. Phys. Oceanogr., 34 , 888902.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., 1993: Climate change and the regulation of the surface moisture and energy budgets. Climate Dyn., 8 , 225239.

  • Bony, S., and J-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32 .L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bony, S., J-L. Dufresne, H. Le Treut, J-J. Morcrette, and C. Senior, 2004: On dynamic and thermodynamic components of cloud changes. Climate Dyn., 22 , 7186.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., 1979: The response of an equatorial ocean to simple wind stress patterns. II: Numerical results. J. Mar. Res., 37 , 253299.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., and E. S. Sarachik, 1977: Forced baroclinic ocean motions. Part II: The linear equatorial bounded case. J. Mar. Res., 35 , 395432.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S. E. Zebiak, and R. Murtugudde, 1997: 20th century sea surface temperature trends. Science, 275 , 957960.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., A. T. Wittenberg, and S. Masina, 2006: Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Modell., 15 , 274298.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17 , 26882701.

  • Clarke, A. J., and A. Lebedev, 1996: Long-term changes in equatorial Pacific trade winds. J. Climate, 9 , 10201029.

  • Clarke, A. J., and A. Lebedev, 1997: Interannual and decadal changes in equatorial wind stress in the Atlantic, Indian, and Pacific Oceans and the eastern ocean coastal response. J. Climate, 10 , 17221729.

    • Search Google Scholar
    • Export Citation
  • Clement, A., and R. Seager, 1999: Climate and the tropical oceans. J. Climate, 12 , 33833401.

  • Clement, A., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9 , 21902196.

  • Cobb, K. M., C. D. Charles, and D. E. Hunter, 2001: A central tropical Pacific coral demonstrates Pacific, Indian, and Atlantic decadal climate connections. Geophys. Res. Lett., 28 , 22092212.

    • Search Google Scholar
    • Export Citation
  • Cobb, K. M., C. D. Charles, H. Cheng, and R. L. Edwards, 2003: El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 424 , 271276.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Delworth, T. L., and Coauthors, 2006: GFDLs CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19 , 643674.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the Tropics and North Pacific during boreal winter since 1900. J. Climate, 17 , 31093124.

    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32 .L17706, doi:10.1029/2005GL023272.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., P. S. Dekens, M. McCarthy, A. C. Ravelo, P. B. deMenocal, M. Barreiro, R. C. Pacanowski, and S. G. Philander, 2006: The Pliocene paradox (mechanisms for a permanent El Niño). Science, 312 , 14851489.

    • Search Google Scholar
    • Export Citation
  • Furevik, T., M. Bentsen, H. Drange, I. K. T. Kindem, N. G. Kvamtsø, and A. Sorteberg, 2003: Description and evaluation of the Bergen climate model: ARPEGE coupled with MICOM. Climate Dyn., 21 , 2751.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., and Coauthors, 2000: The simulation of SST, sea ice extents and ocean heat transport in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16 , 147168.

    • Search Google Scholar
    • Export Citation
  • Gordon, H. B., and Coauthors, 2002: The CSIRO Mk3 climate system model. Tech. Rep. 60, CSIRO Atmospheric Research, Aspendale, Victoria, Australia, 134 pp.

  • Graham, N. E., 1994: Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: Observations and model results. Climate Dyn., 10 , 3. 135162.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., 2006: El Niño-mean state-seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26 , 329348.

  • Hansen, J., M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medinaelizade, 2006: Global temperature change. Proc. Natl. Acad. Sci. USA, 103 , 1428814293.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., 1989: Post World War II trends in tropical Pacific surface trades. J. Climate, 2 , 15611563.

  • Harrison, D. E., and G. A. Vecchi, 2001: El Niño and La Niña: Equatorial Pacific surface temperature and thermocline variability, 1986-98. Geophys. Res. Lett., 28 , 10511054.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and K. Larson, 2002: An important constraint on tropical cloud–climate feedback. Geophys. Res. Lett., 29 .1951, doi:10.1029/2002GL015835.

    • Search Google Scholar
    • Export Citation
  • Hasumi, H., and S. Emori, Eds. 2004: K-1 coupled model (MIROC) description. K-1 Tech. Rep. 1, Center for Climate System Research, University of Tokyo, 34 pp.

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19 , 56865699.

  • Jin, F-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54 , 811829.

  • Johns, T., and Coauthors, 2004: HadGEM1—Model description and analysis of preliminary experiments for the IPCC Fourth Assessment Report. Tech Rep. 55, Met Office, Exeter, United Kingdom.

  • Jungclaus, J., and Coauthors, 2006: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J. Climate, 19 , 39523972.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103 , C9. 1856718589.

    • Search Google Scholar
    • Export Citation
  • Karspeck, A. R., R. Seager, and M. A. Cane, 2004: Predictability of tropical Pacific decadal variability in an intermediate model. J. Climate, 17 , 28422850.

    • Search Google Scholar
    • Export Citation
  • Kim, S-J., G. M. Flato, G. J. de Boer, and N. A. McFarlane, 2002: A coupled climate model simulation of the Last Glacial Maximum. Part I: Transient multi-decadal response. Climate Dyn., 19 , 515537.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B., 1997: Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J. Climate, 10 , 16901704.

  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6 , 15871606.

  • Knutson, T. R., and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8 , 21812199.

    • Search Google Scholar
    • Export Citation
  • Larson, K., and D. L. Hartmann, 2003: Interactions among cloud, water vapor, radiation, and large-scale circulation in the tropical climate. Part I: Sensitivity to uniform sea surface temperature changes. J. Climate, 16 , 14251440.

    • Search Google Scholar
    • Export Citation
  • Larson, K., D. L. Hartmann, and S. A. Klein, 1999: The role of clouds, water vapor, circulation, and boundary layer structure in the sensitivity of the tropical climate. J. Climate, 12 , 23592374.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1990: Some coolness concerning global warming. Bull. Amer. Meteor. Soc., 71 , 288299.

  • Liu, Z., 1998: On the role of ocean in the transient response of tropical climatology to global warming. J. Climate, 11 , 864875.

  • Liu, Z., and B. Huang, 1998: Why is there a tritium maximum in the central equatorial Pacific thermocline? J. Phys. Oceanogr., 28 , 15271533.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., S. Varvus, F. He, N. Wen, and Y. Zhong, 2005: Rethinking tropical oceanic response to global warming: The enhanced equatorial warming. J. Climate, 18 , 46844700.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34 .L06805, doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Lucarini, L., and G. L. Russell, 2002: Comparison of mean climate trends in the northern hemisphere between National Centers for Environmental Prediction and two atmosphere-ocean model forced runs. J. Geophys. Res., 107 .4269, doi:10.1029/2001JD001247.

    • Search Google Scholar
    • Export Citation
  • Marti, O., and Coauthors, 2005: The new IPSL climate system model: IPSL-CM4. Tech. Rep., Institut Pierre Simon Laplace des Sciences de l’Environment Global, IPSL, Case 101, Paris, France.

  • McPhaden, M. J., 1993: TOGA-TAO and the 1991–93 El Niño-Southern Oscillation event. Oceanography, 6 , 3644.

  • McPhaden, M. J., 1999: Genesis and evolution of the 1997–98 El Niño. Science, 283 , 950954.

  • McPhaden, M. J., and D. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415 , 603608.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and D. Zhang, 2004: Pacific Ocean circulation rebounds. Geophys. Res. Lett., 31 .L18301, doi:10.1029/2004GL020727.

  • Meehl, G. A., and W. M. Washington, 1996: El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature, 382 , 5660.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., H. Teng, and G. Branstator, 2006: Future changes of El Niño in two global coupled climate models. Climate Dyn., 26 , 549566.

    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., 2006: Changes to ENSO under CO2 doubling in a multimodel ensemble. J. Climate, 19 , 40094027.

  • Miller, R. L., 1997: Tropical thermostats and low cloud cover. J. Climate, 10 , 409440.

  • Min, S-K., S. Legutke, A. Hense, and W-T. Kwon, 2005: Internal variability in a 1000-yr control simulation with the coupled model ECHO-G-I: Near-surface temperature, precipitation and mean sea level pressure. Tellus, 57A , 605621.

    • Search Google Scholar
    • Export Citation
  • Moore, M. D., C. D. Charles, J. L. Rubenstone, and R. G. Fairbanks, 2000: U/Th-dated sclerosponges from the Indonesian Seaway record subsurface adjustments to west Pacific winds. Paleoceanography, 15 , 404416.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 2005: Trends in upper-level cloud cover and surface wind divergence over the tropical Indo-Pacific Ocean between 1952 and 1997. J. Geophys. Res., 110 .D21110, doi:10.1029/2005JD006183.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1981: The response of equatorial oceans to a relaxation of the trade winds. J. Phys. Oceanogr., 11 , 176189.

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 .4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401 , 360363.

    • Search Google Scholar
    • Export Citation
  • Salas y Mélia, D., and Coauthors, 2006: Description and validation of the CNRM-CM3 global coupled model. Climate Dyn., in press.

  • Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19 , 153192.

    • Search Google Scholar
    • Export Citation
  • Schoenefeldt, R., and F. A. Schott, 2006: Decadal variability of the Indian Ocean cross-equatorial exchange in SODA. Geophys. Res. Lett., 33 .L08602, doi:10.1029/2006GL025891.

    • Search Google Scholar
    • Export Citation
  • Seager, R., A. R. Karspeck, M. A. Cane, Y. Kushnir, A. Giannini, A. Kaplan, B. Kerman, and J. Velez, 2004: Predicting Pacific decadal variability. Earth Climate: The Ocean–Atmosphere Interaction,Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 105–120.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17 , 24662477.

  • Soden, B. J., 2000: The sensitivity of the tropical hydrological cycle to ENSO. J. Climate, 13 , 538549.

  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19 , 33543360.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., D. L. Jackson, V. Ramaswamy, D. Schwarzkopf, and X. Huang, 2005: The radiative signature upper tropospheric moistening. Science, 310 , 841844.

    • Search Google Scholar
    • Export Citation
  • Song, Q. N., G. A. Vecchi, and A. Rosati, 2007a: Indian Ocean variability in the GFDL Coupled Climate Model. J. Climate, 20 , 28952916.

    • Search Google Scholar
    • Export Citation
  • Song, Q. N., G. A. Vecchi, and A. Rosati, 2007b: The role of the Indonesian Throughflow in the Indo–Pacific climate variability in the GFDL Coupled Climate Model. J. Climate, 20 , 24342451.

    • Search Google Scholar
    • Export Citation
  • Tanaka, H. L., N. Ishizaki, and A. Kitoh, 2004: Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus, 56A , 250269.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9 , 303319.

  • Trenberth, K. E., J. Fasullo, and L. Smith, 2005: Trends and variability in column integrated atmospheric water vapor. Climate Dyn., 24 , 741758.

    • Search Google Scholar
    • Export Citation
  • Urban, F. E., J. E. Cole, and J. T. Overpeck, 2000: Influence of mean climate change on climate variability from a 155-year tropical Pacific coral record. Nature, 407 , 989993.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., S. Y. Philip, and M. Collins, 2005: El Niño in a changing climate: A multi-model study. Ocean Sci., 1 , 8195.

  • Vecchi, G. A., and B. J. Soden, 2007: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34 .L08702, doi:10.1029/2006GL028905.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441 , 7376.

    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., and N. A. Diansky, 2004: El Niño reproduction in coupled general circulation model. Russ. Meteor. Hydrol., 12 , 514.

  • Walker, G. T., and E. W. Bliss, 1932: World Weather V. Memo. Roy. Meteor. Soc., 4 , 36. 5384.

  • Walker, G. T., and E. W. Bliss, 1937: World Weather VI. Memo. Roy. Meteor. Soc., 4 , 39. 119139.

  • Wang, C., and J. Picaut, 2004: Understanding ENSO Physics—A review. Earth Climate: The Ocean–Atmosphere Interaction,Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 21–48.

    • Search Google Scholar
    • Export Citation
  • Washington, W. M., and Coauthors, 2000: Parallel climate model (PCM) control and transient simulations. Climate Dyn., 16 , 755774.

  • Webb, M. J., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27 , 1738.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997-98. Nature, 401 , 356360.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and M. Schabel, 2000: Precise climate monitoring using complementary satellite data sets. Nature, 403 , 414416.

  • Wijffels, S., and G. Meyers, 2004: An intersection of oceanic waveguides: Variability in the Indonesian Throughflow region. J. Phys. Oceanogr., 34 , 12321253.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2002: ENSO response to altered climates. Ph.D. thesis, Princeton University, 475 pp.

  • Wittenberg, A. T., A. Rosati, N-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19 , 698722.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1975: El Niño—The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5 , 572584.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., S. K. Behera, J-J. Luo, S. Masson, M. R. Jury, and S. A. Rao, 2004: Coupled ocean-atmosphere variability in the tropical Indian Ocean. Earth Climate: The Ocean–Atmosphere Interaction,Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 189–211.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., X. Zhang, and Y. Guo, 2004: Global coupled ocean-atmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21 , 444455.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and A. Noda, 2002: Improvements in the Meteorological Research Institute Global Ocean-Atmosphere Coupled GCM (MRI-CGCM2) and its climate sensitivity. Tech. Rep. 10, NIES, Japan, 8 pp.

  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southerrn Oscillation. Mon. Wea. Rev., 115 , 22622278.

  • Zelle, H., G. Appeldoorn, G. Burgers, and G. J. van Oldenborgh, 2004: The relationship between sea surface temperature and thermocline depth in the eastern equatorial Pacific. J. Phys. Oceanogr., 34 , 643655.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., and M. J. McPhaden, 2006: Decadal variability of the shallow Pacific meridional overturning circulation: Relation to tropical sea surface temperatures in observations and climate change models. Ocean Modell., 15 , 250273.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and H. Song, 2006: Evidence of deceleration of atmospheric vertical overturning circulation over the tropical Pacific. Geophys. Res. Lett., 33 .L12701, doi:10.1029/2006GL025942.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10 , 10041020.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 80 80 79
PDF Downloads 57 57 57

Global Warming and the Weakening of the Tropical Circulation

View More View Less
  • 1 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 2 Rosenstiel School for Marine and Atmospheric Science, University of Miami, Miami, Florida
Restricted access

Abstract

This study examines the response of the tropical atmospheric and oceanic circulation to increasing greenhouse gases using a coordinated set of twenty-first-century climate model experiments performed for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The strength of the atmospheric overturning circulation decreases as the climate warms in all IPCC AR4 models, in a manner consistent with the thermodynamic scaling arguments of Held and Soden. The weakening occurs preferentially in the zonally asymmetric (i.e., Walker) rather than zonal-mean (i.e., Hadley) component of the tropical circulation and is shown to induce substantial changes to the thermal structure and circulation of the tropical oceans. Evidence suggests that the overall circulation weakens by decreasing the frequency of strong updrafts and increasing the frequency of weak updrafts, although the robustness of this behavior across all models cannot be confirmed because of the lack of data. As the climate warms, changes in both the atmospheric and ocean circulation over the tropical Pacific Ocean resemble “El Niño–like” conditions; however, the mechanisms are shown to be distinct from those of El Niño and are reproduced in both mixed layer and full ocean dynamics coupled climate models. The character of the Indian Ocean response to global warming resembles that of Indian Ocean dipole mode events. The consensus of model results presented here is also consistent with recently detected changes in sea level pressure since the mid–nineteenth century.

Corresponding author address: Dr. Gabriel A. Vecchi, NOAA/Geophysical Fluid Dyamics Laboratory, Forrestal Campus, Princeton, NJ 08542. Email: Gabriel.A.Vecchi@noaa.gov

Abstract

This study examines the response of the tropical atmospheric and oceanic circulation to increasing greenhouse gases using a coordinated set of twenty-first-century climate model experiments performed for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The strength of the atmospheric overturning circulation decreases as the climate warms in all IPCC AR4 models, in a manner consistent with the thermodynamic scaling arguments of Held and Soden. The weakening occurs preferentially in the zonally asymmetric (i.e., Walker) rather than zonal-mean (i.e., Hadley) component of the tropical circulation and is shown to induce substantial changes to the thermal structure and circulation of the tropical oceans. Evidence suggests that the overall circulation weakens by decreasing the frequency of strong updrafts and increasing the frequency of weak updrafts, although the robustness of this behavior across all models cannot be confirmed because of the lack of data. As the climate warms, changes in both the atmospheric and ocean circulation over the tropical Pacific Ocean resemble “El Niño–like” conditions; however, the mechanisms are shown to be distinct from those of El Niño and are reproduced in both mixed layer and full ocean dynamics coupled climate models. The character of the Indian Ocean response to global warming resembles that of Indian Ocean dipole mode events. The consensus of model results presented here is also consistent with recently detected changes in sea level pressure since the mid–nineteenth century.

Corresponding author address: Dr. Gabriel A. Vecchi, NOAA/Geophysical Fluid Dyamics Laboratory, Forrestal Campus, Princeton, NJ 08542. Email: Gabriel.A.Vecchi@noaa.gov

Save