Precipitation and Circulation Covariability in the Extratropics

RenéD. Garreaud Departamento de Geofísica, Universidad de Chile, Santiago, Chile

Search for other papers by RenéD. Garreaud in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extratropical precipitation is primarily produced by cold and warm fronts associated with surface cyclones and upper-level troughs. The growth of these midlatitude storms is partially controlled by the dry baroclinicity of the troposphere, which in turn can be roughly quantified by the intensity of the upper-level zonal flow. Orographic rainfall, an important component of the precipitation in several midlatitude regions, is also partially determined by the intensity of the cross-mountain midlevel winds. Thus, at monthly and longer time scales, variations of precipitation and zonal flow aloft (as well as wind shear) at a given location should exhibit some degree of coherence. In this work the local covariability of these variables is documented over intermonthly and interannual time scales, using global precipitation products and atmospheric reanalysis from 1979 to 2004. The spatial correspondence between the precipitation and two indices of synoptic activity in the extratropics is also documented.

The local correlation (r0) between monthly anomalies of precipitation and upper-level (300 hPa) zonal flow varies in space, from moderately and even highly significant values (r0 ∼ 0.3 to 0.7) over the midlatitude oceans to near zero over the interior of continental areas. Broadly similar results are found when considering the monthly variance of the high-pass-filtered meridional wind (an index of eddy activity) or the midlevel Eady growth rate. The local correlation map between precipitation and low-level (850 hPa) zonal flow is similar to its upper-level counterpart, but the correlations over open ocean are somewhat weaker, while orographic effects show up more clearly. The correlations are positive and large upstream of the major north–south-oriented mountain ranges, as strong westerlies promote upslope rain in addition to storm-related precipitation. In contrast, the correlation tends to be negative downstream of the ranges, as strong westerlies enhance the rain shadow effects over the lee side.

Corresponding author address: Dr. René Garreaud, Departamento de Geofísica, Universidad de Chile, Blanco Encalada 2002, Santiago, Chile. Email: rgarreau@dgf.uchile.cl

Abstract

Extratropical precipitation is primarily produced by cold and warm fronts associated with surface cyclones and upper-level troughs. The growth of these midlatitude storms is partially controlled by the dry baroclinicity of the troposphere, which in turn can be roughly quantified by the intensity of the upper-level zonal flow. Orographic rainfall, an important component of the precipitation in several midlatitude regions, is also partially determined by the intensity of the cross-mountain midlevel winds. Thus, at monthly and longer time scales, variations of precipitation and zonal flow aloft (as well as wind shear) at a given location should exhibit some degree of coherence. In this work the local covariability of these variables is documented over intermonthly and interannual time scales, using global precipitation products and atmospheric reanalysis from 1979 to 2004. The spatial correspondence between the precipitation and two indices of synoptic activity in the extratropics is also documented.

The local correlation (r0) between monthly anomalies of precipitation and upper-level (300 hPa) zonal flow varies in space, from moderately and even highly significant values (r0 ∼ 0.3 to 0.7) over the midlatitude oceans to near zero over the interior of continental areas. Broadly similar results are found when considering the monthly variance of the high-pass-filtered meridional wind (an index of eddy activity) or the midlevel Eady growth rate. The local correlation map between precipitation and low-level (850 hPa) zonal flow is similar to its upper-level counterpart, but the correlations over open ocean are somewhat weaker, while orographic effects show up more clearly. The correlations are positive and large upstream of the major north–south-oriented mountain ranges, as strong westerlies promote upslope rain in addition to storm-related precipitation. In contrast, the correlation tends to be negative downstream of the ranges, as strong westerlies enhance the rain shadow effects over the lee side.

Corresponding author address: Dr. René Garreaud, Departamento de Geofísica, Universidad de Chile, Blanco Encalada 2002, Santiago, Chile. Email: rgarreau@dgf.uchile.cl

Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19 , 35183543.

  • Bielli, S., and D. L. Hartmann, 2004: On wind, convection, and SST variations in the northeastern tropical Pacific associated with the Madden–Julian oscillation. J. Climate, 17 , 40804088.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15 , 21632183.

  • Eckhardt, S., A. Stohl, H. Wernli, P. James, C. Forster, and N. Spichtinger, 2004: A 15-year climatology of warm conveyor belts. J. Climate, 17 , 218237.

    • Search Google Scholar
    • Export Citation
  • Eichler, T., and W. Higgins, 2006: Climatology and ENSO-related variability of North American extratropical cyclone activity. J. Climate, 19 , 20762093.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and C. S. Frederiksen, 1993: Southern Hemisphere storm tracks, blocking, and low-frequency anomalies in a primitive equation model. J. Atmos. Sci., 50 , 31483163.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm tracks. J. Atmos. Sci., 47 , 18541864.

  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59 , 10411061.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18 , 41084129.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Nakamura, H., 1992: Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49 , 16291642.

  • Nakamura, H., and A. Shimpo, 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Climate, 17 , 18281844.

    • Search Google Scholar
    • Export Citation
  • Paciorek, C. J., J. S. Risbey, V. Ventura, and R. D. Rosen, 2002: Multiple indices of Northern Hemisphere cyclone activity, winters 1949–99. J. Climate, 15 , 15731590.

    • Search Google Scholar
    • Export Citation
  • Pandey, G. R., D. R. Cayan, M. D. Dettinger, and K. P. Georgakakos, 2000: A hybrid orographic plus statistical model for downscaling daily precipitation in Northern California. J. Hydrometeor., 1 , 491506.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33 , 645671.

  • Stewart, R. E., K. K. Szeto, R. F. Reinking, S. A. Clough, and S. P. Ballard, 1998: Midlatitude cyclonic systems and their features affecting large scales and climate. Rev. Geophys., 36 , 245261.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1991: Storm tracks in the Southern Hemisphere. J. Atmos. Sci., 48 , 21592178.

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78 , 25392558.

    • Search Google Scholar
    • Export Citation
  • Yin, X., A. Gruber, and P. Arkin, 2004: Comparison of the GPCP and CMAP merged gauge–satellite monthly precipitation products for the period 1979–2001. J. Hydrometeor., 5 , 12071222.

    • Search Google Scholar
    • Export Citation
  • Yoon, J-H., and T-C. Chen, 2006: Maintenance of the boreal forest rainbelts during Northern summer. J. Climate, 19 , 14371449.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1895 644 48
PDF Downloads 685 168 11