Hydroclimatic Trends in the Mississippi River Basin from 1948 to 2004

Taotao Qian National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Taotao Qian in
Current site
Google Scholar
PubMed
Close
,
Aiguo Dai National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Aiguo Dai in
Current site
Google Scholar
PubMed
Close
, and
Kevin E. Trenberth National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Kevin E. Trenberth in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The trends of the surface water and energy budget components in the Mississippi River basin from 1948 to 2004 are investigated using a combination of hydrometeorological observations and observation-constrained simulations of the land surface conditions using the latest version of the Community Land Model version 3 (CLM3). The atmospheric forcing data for the CLM3 were constructed by adding the intramonthly variations from the 6-hourly National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis to observation-based analyses of monthly precipitation, surface air temperature, and cloud cover. The model-based analysis suggests that, for the surface water budget, the observed increase in basin-averaged precipitation is compensated by increases in both runoff and evapotranspiration. For the surface energy budget, the decrease of net shortwave radiation associated with observed increases in cloudiness is compensated by decreases in both net longwave radiation and sensible heat flux, while the latent heat flux increases in association with wetter soil conditions. Both the simulated surface water and energy budgets support the view that evapotranspiration has increased in the Mississippi River basin from 1948 to 2004. Sensitivity experiments show that the precipitation change dominates the evapotranspiration trend, while the temperature and solar radiation changes have only small effects. Large spatial variations within the Mississippi River basin and the contiguous United States are also found. However, the increased evapotranspiration is ubiquitous despite spatial variations in hydrometeorology.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Dr. Taotao Qian, Climate and Global Dynamics Division, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: tqian@ucar.edu

Abstract

The trends of the surface water and energy budget components in the Mississippi River basin from 1948 to 2004 are investigated using a combination of hydrometeorological observations and observation-constrained simulations of the land surface conditions using the latest version of the Community Land Model version 3 (CLM3). The atmospheric forcing data for the CLM3 were constructed by adding the intramonthly variations from the 6-hourly National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis to observation-based analyses of monthly precipitation, surface air temperature, and cloud cover. The model-based analysis suggests that, for the surface water budget, the observed increase in basin-averaged precipitation is compensated by increases in both runoff and evapotranspiration. For the surface energy budget, the decrease of net shortwave radiation associated with observed increases in cloudiness is compensated by decreases in both net longwave radiation and sensible heat flux, while the latent heat flux increases in association with wetter soil conditions. Both the simulated surface water and energy budgets support the view that evapotranspiration has increased in the Mississippi River basin from 1948 to 2004. Sensitivity experiments show that the precipitation change dominates the evapotranspiration trend, while the temperature and solar radiation changes have only small effects. Large spatial variations within the Mississippi River basin and the contiguous United States are also found. However, the increased evapotranspiration is ubiquitous despite spatial variations in hydrometeorology.

* The National Center for Atmospheric Research is sponsored by the National Science Foundation

Corresponding author address: Dr. Taotao Qian, Climate and Global Dynamics Division, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. Email: tqian@ucar.edu

Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4 , 11471167.

    • Search Google Scholar
    • Export Citation
  • Alpert, P., P. Kishcha, Y. J. Kaufman, and R. Schwarzbard, 2005: Global dimming or local dimming?: Effect of urbanization on sunlight availability. Geophys. Res. Lett., 32 .L17802, doi:10.1029/2005GL023320.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82 , 24152434.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., and M. B. Parlange, 1998: Hydrologic cycle explains the evaporation paradox. Nature, 396 , 2930.

  • Chattopadhyay, N., and M. Hulme, 1997: Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agric. For. Meteor., 87 , 5573.

    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3 , 249266.

    • Search Google Scholar
    • Export Citation
  • Crawford, T. M., and C. E. Duchon, 1999: An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation. J. Appl. Meteor., 38 , 474480.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Recent climatology, variability, and trends in global surface humidity. J. Climate, 19 , 35893606.

  • Dai, A., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3 , 660687.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J. Climate, 17 , 930951.

    • Search Google Scholar
    • Export Citation
  • Dai, A., A. D. Del Genio, and I. Y. Fung, 1997a: Clouds, precipitation, and temperature range. Nature, 386 , 665666.

  • Dai, A., I. Y. Fung, and A. D. Del Genio, 1997b: Surface observed global land precipitation variations during 1900–88. J. Climate, 10 , 29432962.

    • Search Google Scholar
    • Export Citation
  • Dai, A., K. E. Trenberth, and T. R. Karl, 1999: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12 , 24512473.

    • Search Google Scholar
    • Export Citation
  • Dai, A., T. R. Karl, B. Sun, and K. E. Trenberth, 2006: Recent trends in cloudiness over the United States: A tale of monitoring inadequacies. Bull. Amer. Meteor. Soc., 87 , 597606.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84 , 10131023.

  • Dickinson, R. E., K. W. Oleson, G. B. Bonan, F. Hoffman, P. Thornton, M. Vertenstein, Z-L. Yang, and X. Zeng, 2006: The Community Land Model and its climate statistics as a component of the Community Climate System Model. J. Climate, 19 , 23022324.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., A. J. Dolman, and N. Sato, 1999: The pilot phase of the Global Soil Wetness Project. Bull. Amer. Meteor. Soc., 80 , 851878.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and Coauthors, 1997: Maximum and minimum temperature trends for the globe. Science, 277 , 364367.

  • Fan, Y., H. M. Van den Dool, D. Lohmann, and K. Mitchell, 2006: 1948–98 U.S. hydrological reanalysis by the Noah land data assimilation system. J. Climate, 19 , 12141237.

    • Search Google Scholar
    • Export Citation
  • Gedney, N., P. M. Cox, R. A. Betts, O. Boucher, C. Huntingford, and P. A. Stott, 2006: Detection of a direct carbon dioxide effect in continental river runoff records. Nature, 439 , 835838.

    • Search Google Scholar
    • Export Citation
  • Gilgen, H., M. Wild, and A. Ohmura, 1998: Means and trends of shortwave irradiance at the surface estimated from Global Energy Balance Archive data. J. Climate, 11 , 20422061.

    • Search Google Scholar
    • Export Citation
  • Golubev, V. S., J. H. Lawrimore, P. Ya Groisman, N. A. Speranskaya, S. A. Zhuravin, M. J. Menne, T. C. Peterson, and R. W. Malone, 2001: Evaporation changes over the contiguous United States and the former USSR: A reassessment. Geophys. Res. Lett., 28 , 26652668.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya, and Coauthors, 1999: Changes in the probability of heavy precipitation: Important indicators of climatic change. Climatic Change, 42 , 243283.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya, R. W. Knight, and T. R. Karl, 2001: Heavy precipitation and high streamflow in the contiguous United States: Trends in the twentieth century. Bull. Amer. Meteor. Soc., 82 , 219246.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya, R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. H. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor., 5 , 6485.

    • Search Google Scholar
    • Export Citation
  • Hobbins, M. T., J. A. Ramirez, and T. C. Brown, 2004: Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: Paradoxical or complementary? Geophys. Res. Lett., 31 .L13503, doi:10.1029/2004GL019846.

    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Y. Ding, D. C. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319 , 8395.

  • Jones, P. D., and A. Moberg, 2003: Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. J. Climate, 16 , 206223.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Karl, T. R., and P. M. Steurer, 1990: Increased cloudiness in the United States during the first half of the twentieth century: Fact or fiction? Geophys. Res. Lett., 17 , 19251928.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and R. W. Knight, 1998: Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Amer. Meteor. Soc., 79 , 231241.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305 , 11381140.

  • Kunkel, K. E., K. Andsager, and D. R. Easterling, 1999: Long-term trends in extreme precipitation events over the conterminous United States and Canada. J. Climate, 12 , 25152527.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., P. E. Thornton, K. W. Oleson, and G. B. Bonan, 2007: The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land–atmosphere interaction. J. Hydrometeor., 8 , 862880.

    • Search Google Scholar
    • Export Citation
  • Lawrimore, J. H., and T. C. Peterson, 2000: Pan evaporation trends in dry and humid regions of the United States. J. Hydrometeor., 1 , 543546.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., R. L. Grossman, F. Chen, K. Ikeda, and D. Yates, 2003: Choosing the averaging interval for comparison of observed and modeled fluxes along aircraft transects over a heterogeneous surface. J. Hydrometeor., 4 , 179195.

    • Search Google Scholar
    • Export Citation
  • Lettenmaier, D. P., A. W. Wood, R. N. Palmer, E. F. Wood, and E. Z. Stakhiv, 1999: Water resources implications of global warming: A U.S. regional perspective. Climatic Change, 43 , 537579.

    • Search Google Scholar
    • Export Citation
  • Liepert, B. G., 2002: Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophys. Res. Lett., 29 .1421, doi:10.1029/2002GL014910.

    • Search Google Scholar
    • Export Citation
  • Lins, H. F., and J. R. Slack, 1999: Streamflow trends in the United States. Geophys. Res. Lett., 26 , 227230.

  • Liu, B., M. Xu, M. Henderson, and W. Gong, 2004: A spatial analysis of pan evaporation trends in China, 1955–2000. J. Geophys. Res., 109 .D15102, doi:10.1029/2004JD004511.

    • Search Google Scholar
    • Export Citation
  • Margulis, S. A., E. F. Wood, and P. A. Troch, 2006: The terrestrial water cycle: Modeling and data assimilation across catchment scales. J. Hydrometeor., 7 , 309311.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and D. M. Wolock, 2002: Trends and temperature sensitivity of moisture conditions in the conterminous United States. Climate Res., 20 , 1929.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American regional reanalysis. Bull. Amer. Meteor. Soc., 87 , 343360.

  • Milly, P. C. D., and K. A. Dunne, 2001: Trends in evaporation and surface cooling in the Mississippi River basin. Geophys. Res. Lett., 28 , 12191222.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., T. R. Carter, P. D. Jones, M. Hulme, and M. New, 2004: A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre Working Paper 55, 30 pp. [Available online at http://www.tyndall.ac.uk/publications/working_papers/wp55_summary.shtml.].

  • New, M., M. Hulme, and P. Jones, 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12 , 829856.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., and A. Ruiz-Barradas, 2006: Seasonal hydroclimate variability over North America in global and regional reanalyses and AMIP simulations: Varied representation. J. Climate, 19 , 815837.

    • Search Google Scholar
    • Export Citation
  • Niu, G-Y., Z-L. Yang, R. E. Dickinson, and L. E. Gulden, 2005: A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res., 110 .D21106, doi:10.1029/2005JD006111.

    • Search Google Scholar
    • Export Citation
  • Niu, G-Y., Z-L. Yang, R. E. Dickinson, L. E. Gulden, and H. Su, 2007: Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res., 112 .D07103, doi:10.1029/2006JD007522.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., and M. Wild, 2002: Is the hydrological cycle accelerating? Science, 298 , 13451346.

  • Oleson, K. W., and Coauthors, 2004: Technical description of the community land model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 186 pp.

  • Peterson, T. C., and R. S. Vose, 1997: An overview of the Global Historical Climatology Network temperature database. Bull. Amer. Meteor. Soc., 78 , 28372849.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., V. S. Golubev, and P. Ya Groisman, 1995: Evaporation losing its strength. Nature, 377 , 687688.

  • Philipona, R., and B. Dürr, 2004: Greenhouse forcing outweighs decreasing solar radiation driving rapid temperature rise over land. Geophys. Res. Lett., 31 .L22208, doi:10.1029/2004GL020937.

    • Search Google Scholar
    • Export Citation
  • Philipona, R., B. Dürr, C. Marty, A. Ohmura, and M. Wild, 2004: Radiative forcing-measured at Earth’s surface-corroborate the increasing greenhouse effect. Geophys. Res. Lett., 31 .L03202, doi:10.1029/2003GL018765.

    • Search Google Scholar
    • Export Citation
  • Qian, T., A. Dai, K. E. Trenberth, and K. W. Oleson, 2006: Simulation of global land surface conditions from 1948 to 2004. Part I: Forcing data and evaluation. J. Hydrometeor., 7 , 953975.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85 , 381394.

  • Roderick, M. L., and G. D. Farquhar, 2002: The cause of decreased pan evaporation over the past 50 years. Science, 298 , 14101411.

  • Schwartz, R. D., 2005: Global dimming: Clear-sky atmospheric transmission from astronomical extinction measurements. J. Geophys. Res., 110 .D14210, doi:10.1029/2005JD005882.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443 , 205209.

    • Search Google Scholar
    • Export Citation
  • Stanhill, G., and S. Cohen, 2001: Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric. For. Meteor., 107 , 255278.

    • Search Google Scholar
    • Export Citation
  • Sun, B., 2003: Cloudiness over the contiguous United States: Contemporary changes observed using ground-based and ISCCP D2 data. Geophys. Res. Lett., 30 .1053, doi:10.1029/2002GL015887.

    • Search Google Scholar
    • Export Citation
  • Thomas, A., 2000: Spatial and temporal characteristics of potential evapotranspiration trends over China. Int. J. Climatol., 20 , 381396.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2005: Relationships between precipitation and surface temperature. Geophys. Res. Lett., 32 .L14703, doi:10.1029/2005GL022760.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., B. M. Fekete, M. Meybeck, and R. B. Lammers, 2000: Global system of rivers: Its role in organizing continental land mass and defining land-to-ocean linkages. Global Biogeochem. Cycles, 14 , 599621.

    • Search Google Scholar
    • Export Citation
  • Walter, M. T., D. S. Wilks, J-Y. Parlange, and R. L. Schneider, 2004: Increasing evapotranspiration from the conterminous United States. J. Hydrometeor., 5 , 405408.

    • Search Google Scholar
    • Export Citation
  • Wild, M., A. Ohmura, H. Gilgen, and D. Rosenfeld, 2004: On the consistency of trends in radiation and temperature records and implications for the global hydrological cycle. Geophys. Res. Lett., 31 .L11201, doi:10.1029/2003GL019188.

    • Search Google Scholar
    • Export Citation
  • Wu, W., and R. E. Dickinson, 2005: Warm-season rainfall variability over the U.S. Great Plains and its correlation with evapotranspiration in a climate simulation. Geophys. Res. Lett., 32 .L17402, doi:10.1029/2005GL023422.

    • Search Google Scholar
    • Export Citation
  • Yang, D., D. Kane, Z. Zhang, D. Legates, and B. Goodison, 2005: Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophys. Res. Lett., 32 .L19501, doi:10.1029/2005GL024057.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. C., W. B. Rossow, and A. A. Lacis, 1995: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets. 1. Method and sensitivity to input data uncertainties. J. Geophys. Res., 100 , 11491165.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2256 1248 96
PDF Downloads 719 203 9