Inclusion of Ice Microphysics in the NCAR Community Atmospheric Model Version 3 (CAM3)

Xiaohong Liu Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Xiaohong Liu in
Current site
Google Scholar
PubMed
Close
,
Joyce E. Penner Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Joyce E. Penner in
Current site
Google Scholar
PubMed
Close
,
Steven J. Ghan Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Steven J. Ghan in
Current site
Google Scholar
PubMed
Close
, and
Minghuai Wang Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Minghuai Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A prognostic equation for ice crystal number concentration together with an ice nucleation scheme are implemented in the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 3 (CAM3) with the aim of studying the indirect effect of aerosols on cold clouds. The effective radius of ice crystals, which is used in the radiation and gravitational settlement calculations, is now calculated from model-predicted mass and number of ice crystals rather than diagnosed as a function of temperature. A water vapor deposition scheme is added to replace the condensation and evaporation (C–E) in the standard CAM3 for ice clouds. The repartitioning of total water into liquid and ice in mixed-phase clouds as a function of temperature is removed, and ice supersaturation is allowed. The predicted ice water content in the modified CAM3 is in better agreement with the Aura Microwave Limb Sounder (MLS) data than that in the standard CAM3. The cirrus cloud fraction near the tropical tropopause, which is underestimated in the standard CAM3 as revealed through comparison with the Stratospheric Aerosol and Gas Experiment II (SAGE II) data, is increased by 20%–30%, and the cold temperature bias there is reduced by 1–2 K. However, an increase in the cloud fraction in polar regions makes the underestimation (by ∼20 W m−2) of downwelling shortwave radiation in the standard CAM3 even worse. A sensitivity test reducing the threshold relative humidity with respect to ice (RHi) for heterogeneous ice nucleation from 120% to 105% (representing nearly perfect ice nuclei) increases the global cloud cover by 1.4%, temperature near the tropical tropopause by 4–5 K, and water vapor in the stratosphere by 50%–80%.

Corresponding author address: Xiaohong Liu, Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, 3200 Q Ave., MSIN K9-24, Richland, WA 99352. Email: Xiaohong.Liu@pnl.gov

Abstract

A prognostic equation for ice crystal number concentration together with an ice nucleation scheme are implemented in the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 3 (CAM3) with the aim of studying the indirect effect of aerosols on cold clouds. The effective radius of ice crystals, which is used in the radiation and gravitational settlement calculations, is now calculated from model-predicted mass and number of ice crystals rather than diagnosed as a function of temperature. A water vapor deposition scheme is added to replace the condensation and evaporation (C–E) in the standard CAM3 for ice clouds. The repartitioning of total water into liquid and ice in mixed-phase clouds as a function of temperature is removed, and ice supersaturation is allowed. The predicted ice water content in the modified CAM3 is in better agreement with the Aura Microwave Limb Sounder (MLS) data than that in the standard CAM3. The cirrus cloud fraction near the tropical tropopause, which is underestimated in the standard CAM3 as revealed through comparison with the Stratospheric Aerosol and Gas Experiment II (SAGE II) data, is increased by 20%–30%, and the cold temperature bias there is reduced by 1–2 K. However, an increase in the cloud fraction in polar regions makes the underestimation (by ∼20 W m−2) of downwelling shortwave radiation in the standard CAM3 even worse. A sensitivity test reducing the threshold relative humidity with respect to ice (RHi) for heterogeneous ice nucleation from 120% to 105% (representing nearly perfect ice nuclei) increases the global cloud cover by 1.4%, temperature near the tropical tropopause by 4–5 K, and water vapor in the stratosphere by 50%–80%.

Corresponding author address: Xiaohong Liu, Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, 3200 Q Ave., MSIN K9-24, Richland, WA 99352. Email: Xiaohong.Liu@pnl.gov

Save
  • Archuleta, C. M., P. J. DeMott, and S. M. Kreidenweis, 2005: Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures. Atmos. Chem. Phys., 5 , 26172634.

    • Search Google Scholar
    • Export Citation
  • Bertram, A. K., T. Koop, L. T. Molina, and M. J. Molina, 2000: Ice formation in (NH4)2SO4-H2O particles. J. Phys. Chem., 104A , 584588.

    • Search Google Scholar
    • Export Citation
  • Borrmann, S., S. Solomon, J. E. Dye, and B. Luo, 1996: The potential of cirrus clouds for heterogeneous chlorine activation. Geophys. Res. Lett., 23 , 21332136.

    • Search Google Scholar
    • Export Citation
  • Boville, B. A., P. J. Rasch, J. J. Hack, and J. R. McCaa, 2006: Representation of clouds and precipitation processes in the Community Atmosphere Model version 3 (CAM3). J. Climate, 19 , 21842198.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., S. M. Kreidenweis, L. M. McInnes, D. C. Rogers, and P. J. DeMott, 1998: Single particles analyses of ice nucleating aerosols in the upper troposphere and lower stratosphere. Geophys. Res. Lett., 25 , 13911394.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., and Coauthors, 2004: Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: Physiochemistry and optical properties. J. Geophys. Res., 109 .D15S09, doi:10.1029/2003JD004378.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., P. J. Rasch, B. E. Eaton, B. Khattatov, J-F. Lamarque, and C. S. Zender, 2001: Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. J. Geophys. Res., 106 , 73137336.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006a: The Community Climate System Model version 3 (CCSM3). J. Climate, 19 , 21222143.

  • Collins, W. D., and Coauthors, 2006b: The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Climate, 19 , 21442161.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25 , 16581680.

    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., D. M. Murphy, P. K. Hudson, and D. S. Thomson, 2004: Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE. J. Geophys. Res., 109 .D04201, doi:10.1029/2003JD004032.

    • Search Google Scholar
    • Export Citation
  • Danielsen, E. F., 1993: In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by large-scale upwelling in tropical cyclones. J. Geophys. Res., 98 , 86658681.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., 1990: An exploratory study of ice nucleation by soot aerosols. J. Appl. Meteor., 29 , 10721079.

  • DeMott, P. J., Y. Chen, S. M. Kreidenweis, D. C. Roger, and D. E. Shermann, 1999: Ice formation by black carbon particles. Geophys. Res. Lett., 26 , 24292432.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis, 2003: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30 .1732, doi:10.1029/2003GL017410.

    • Search Google Scholar
    • Export Citation
  • Dibbs, J. E., R. W. Talbot, and M. B. Loomis, 1998: Tropospheric sulfate distribution during SUCCESS: Contributions from jet exhaust and surface sources. Geophys. Res. Lett., 25 , 13751378.

    • Search Google Scholar
    • Export Citation
  • Dowling, D. R., and L. F. Radke, 1990: A summary of the physical properties of cirrus clouds. J. Appl. Meteor., 29 , 970978.

  • Easter, R. C., and Coauthors, 2004: MIRAGE: Model description and evaluation of aerosols and trace gases. J. Geophys. Res., 109 .D20210, doi:10.1029/2004JD004571.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., O. Mohler, P. Connolly, M. Kramer, R. Cotton, A. J. Heymsfield, H. Saathoff, and M. Schnaiter, 2006: Some ice nucleation characteristics of Asian and Saharan desert dust. Atmos. Chem. Phys. Discuss., 6 , 15091537.

    • Search Google Scholar
    • Export Citation
  • Fletcher, N. H., 1962: Physics of Rain Clouds. Cambridge University Press, 386 pp.

  • Ghan, S. J., L. R. Leung, R. C. Easter, and A. Abdul-Razzak, 1997a: Prediction of cloud droplet number in a general circulation model. J. Geophys. Res., 102 , 2177721794.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., L. R. Leung, and Q. Hu, 1997b: Application of cloud microphysics to NCAR CCM2. J. Geophys. Res., 102 , 1650716528.

  • Gierens, K., 2003: On the transition between heterogeneous and homogeneous freezing. Atmos. Chem. Phys., 3 , 437446.

  • Gierens, K., U. Schumann, M. Helten, H. Smit, and A. Marenco, 1999: A distribution law for relative humidity in the upper troposphere and lower stratosphere derived from three years of MOZAIC measurements. Ann. Geophys., 17 , 12181226.

    • Search Google Scholar
    • Export Citation
  • Gorbunov, B., A. Baklanov, N. Kakutkina, H. L. Windsor, and R. Toumi, 2001: Ice nucleation on soot particles. J. Aerosol Sci., 32 , 199215.

    • Search Google Scholar
    • Export Citation
  • Haag, W., and B. Kärcher, 2004: The impact of aerosols and gravity waves on cirrus clouds at midlatitudes. J. Geophys. Res., 109 .D12202, doi:10.1029/2004JD004579.

    • Search Google Scholar
    • Export Citation
  • Hoyle, C. R., B. P. Luo, and T. Peter, 2005: The origin of high ice crystal number densities in cirrus clouds. J. Atmos. Sci., 62 , 25682579.

    • Search Google Scholar
    • Export Citation
  • Huffman, P. J., 1973: Supersaturation spectra of AgI. J. Appl. Meteor., 12 , 10801082.

  • Hung, H-M., A. Malinowski, and S. T. Martin, 2003: Kinetics of heterogeneous ice nucleation on the surfaces of mineral dust cores inserted into aqueous ammonium sulfate particles. J. Phys. Chem., 107A , 12961306.

    • Search Google Scholar
    • Export Citation
  • Iacobellis, S. F., G. M. McFarquhar, D. L. Mitchell, and R. C. J. Somerville, 2003: The sensitivity of radiative fluxes to parameterized cloud microphysics. J. Climate, 16 , 29792996.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and O. B. Toon, 1997: The potential impact of soot particles from aircraft exhaust on cirrus clouds. Geophys. Res. Lett., 24 , 249252.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and L. Pfister, 2004: Transport and freeze-drying in the tropical tropopause layer. J. Geophys. Res., 109 .D02207, doi:10.1029/2003JD004022.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., L. Pfister, A. S. Ackerman, A. Tabazadeh, and O. B. Toon, 2001: A conceptual model of the dehydration of air due to freeze-drying by optically thin, laminar cirrus rising slowly across the tropical tropopause. J. Geophys. Res., 106 , 1723717253.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., and U. Lohmann, 2002a: A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols. J. Geophys. Res., 107 .4010, doi:10.1029/2001JD000470.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., and U. Lohmann, 2002b: A parameterization of cirrus cloud formation: Homogeneous freezing including effects of aerosol size. J. Geophys. Res., 107 .4698, doi:10.1029/2001JD001429.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., and U. Lohmann, 2003: A parameterization of cirrus cloud formation: Heterogeneous freezing. J. Geophys. Res., 108 .4402, doi:10.1029/2002JD003220.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., and J. Ström, 2003: The roles of dynamical variability and aerosols in cirrus cloud formation. Atmos. Chem. Phys., 3 , 823838.

    • Search Google Scholar
    • Export Citation
  • Kärcher, B., J. Hendricks, and U. Lohmann, 2006: Physically based parameterization of cirrus cloud formation for use in global atmospheric models. J. Geophys. Res., 111 .D01205, doi:10.1029/2005JD006219.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6 , 15871606.

  • Koop, T., H. P. Ng, L. T. Molina, and M. J. Molina, 1998: A new optical technique to study aerosol phase transitions: The nucleation of ice from H2SO4 aerosols. J. Phys. Chem., 102A , 89248931.

    • Search Google Scholar
    • Export Citation
  • Koop, T., B. P. Luo, A. Tsias, and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406 , 611614.

    • Search Google Scholar
    • Export Citation
  • Kristensson, A., J-F. Gayet, J. Ström, and F. Auriol, 2000: In situ observations of a reduction in effective crystal diameter in cirrus clouds near flight corridors. Geophys. Res. Lett., 27 , 681684.

    • Search Google Scholar
    • Export Citation
  • Kristjánsson, J. E., J. M. Edwards, and D. L. Mitchell, 2000: Impact of a new scheme for optical properties of ice crystals on climates of two gems. J. Geophys. Res., 105 , 1006310079.

    • Search Google Scholar
    • Export Citation
  • Li, J-L., and Coauthors, 2005: Comparisons of EOS MLS cloud ice measurements with ECMWF analyses and GCM simulations: Initial results. Geophys. Res. Lett., 32 .L18710, doi:10.1029/2005GL023788.

    • Search Google Scholar
    • Export Citation
  • Lin, R-F., D. O’C. Starr, P. DeMott, R. Cotton, K. Sassen, E. Jensen, B. Kärcher, and X. Liu, 2002: Cirrus Parcel Model Comparison Project. Phase 1: The critical components to simulate cirrus initiation explicitly. J. Atmos. Sci., 59 , 23052329.

    • Search Google Scholar
    • Export Citation
  • Lin, S. J., and R. B. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport schemes. Mon. Wea. Rev., 124 , 20462070.

  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114 , 11671199.

  • Liu, X., and J. E. Penner, 2005: Ice nucleation parameterization for global models. Meteor. Z., 14 , 499514.

  • Liu, X., J. E. Penner, and M. Herzog, 2005: Global simulation of aerosol dynamics: Model description, evaluation, and interactions between sulfate and nonsulfate aerosols. J. Geophys. Res., 110 .D18206, doi:10.1029/2004JD005674.

    • Search Google Scholar
    • Export Citation
  • Livesey, N. J., and Coauthors, 2005: EOS MLS version 2.2 level 2 data quality and description document. Jet Propulsion Laboratory, Pasadena, CA, 115 pp. [Available online at http://mls.jpl.nasa.gov/data/v2-2_data_quality_document.pdf.].

  • Lohmann, U., 2002: Possible aerosol effects on ice clouds via contact nucleation. J. Atmos. Sci., 59 , 647656.

  • Lohmann, U., and B. Kärcher, 2002: First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM general circulation model. J. Geophys. Res., 107 .4105, doi:10.1029/2001JD000767.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and K. Diehl, 2006: Sensitivity studies of the importance of dust ice nuclei for the indirect aerosol effect on stratoform mixed-phase clouds. J. Atmos. Sci., 63 , 968982.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., B. Kärcher, and J. Hendricks, 2004: Sensitivity studies of cirrus clouds formed by heterogeneous freezing in the ECHAM GCM. J. Geophys. Res., 109 .D16204, doi:10.1029/2003JD004443.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratiform clouds. J. Atmos. Sci., 51 , 18231842.

    • Search Google Scholar
    • Export Citation
  • McFarlane, N., G. J. Boer, J. P. Blanchet, and M. Lazare, 1992: The Canadian Climate Centre second-generation model and its equilibrium climate. J. Climate, 5 , 10131044.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1998: The definition and significance of an effective radius for ice clouds. J. Atmos. Sci., 55 , 20392052.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., A. J. Heymsfield, J. Spinhirne, and B. Hart, 2000: Thin and subvisual tropospause tropical cirrus: Observations and radiative impacts. J. Atmos. Sci., 57 , 18411853.

    • Search Google Scholar
    • Export Citation
  • Menon, S., and L. Rotstayn, 2006: The radiative influence of aerosol effects on liquid-phase cumulus and stratiform clouds based on sensitivity studies with two climate models. Climate Dyn., 27 , 345356.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31 , 708721.

    • Search Google Scholar
    • Export Citation
  • Minikin, A., A. Petzold, J. Ström, R. Krejci, M. Seifert, P. Veltoven, H. Schlager, and U. Schumann, 2003: Aircraft observations of the upper tropospheric fine particle aerosol in the Northern and Southern Hemispheres at midlatitudes. Geophys. Res. Lett., 30 .1503, doi:10.1029/2002GL016458.

    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2005: Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles. J. Geophys. Res., 110 .D11210, doi:10.1029/2004JD005169.

    • Search Google Scholar
    • Export Citation
  • Möhler, O., and Coauthors, 2006: Efficiency of the deposition mode of ice nucleation on mineral dust particles. Atmos. Chem. Phys. Discuss., 6 , 15391577.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. O. Pinto, 2005: Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme. J. Atmos. Sci., 62 , 36833704.

    • Search Google Scholar
    • Export Citation
  • Nober, F. J., H-F. Graf, and D. Rosenfeld, 2003: Sensitivity of the global circulation to the suppression of precipitation by anthropogenic aerosols. Global Planet. Change, 37 , 5780.

    • Search Google Scholar
    • Export Citation
  • Notholt, J., and Coauthors, 2005: Influence of tropospheric SO2 emissions on particle formation and the stratospheric humidity. Geophys. Res. Lett., 32 .L07810, doi:10.1029/2004GL022159.

    • Search Google Scholar
    • Export Citation
  • Oltmans, S. J., H. Vomel, D. J. Hofmann, K. H. Rosenlof, and D. Kley, 2000: The increase in stratospheric water vapor from balloonborne frost point hygrometer measurements at Washington, D.C., and Boulder, Colorado. Geophys. Res. Lett., 27 , 34533456.

    • Search Google Scholar
    • Export Citation
  • Ou, S. C., and K. N. Liou, 1995: Ice microphysics and climatic temperature perturbations. Atmos. Res., 35 , 127138.

  • Penner, J. E., D. H. Lister, D. J. Griggs, D. J. Dokken, and M. McFarland, 1999: Aviation and the Global Atmosphere: Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 373 pp.

    • Search Google Scholar
    • Export Citation
  • Penner, J. E., and Coauthors, 2001: Aerosols, their direct and indirect effects. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 289–348.

    • Search Google Scholar
    • Export Citation
  • Pósfai, M., J. R. Anderson, P. R. Buseck, and H. Sievering, 1999: Soot and sulfate aerosol particles in the remote marine troposphere. J. Geophys. Res., 104 , 2168521694.

    • Search Google Scholar
    • Export Citation
  • Potter, B. E., and J. R. Holton, 1995: The role of monsoon convection in the dehydration of the lower tropical stratosphere. J. Atmos. Sci., 52 , 10341050.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Cloud and Precipitation. Dordrecht, 954 pp.

  • Ramanathan, V., and W. Collins, 1991: Thermodynamics regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Nino. Nature, 357 , 2432.

    • Search Google Scholar
    • Export Citation
  • Rasch, P., and J. E. Kristjánsson, 1998: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 11 , 15871614.

    • Search Google Scholar
    • Export Citation
  • Rasch, P., W. D. Collins, and B. E. Eaton, 2001: Understanding the Indian Ocean Experiment (INDOEX) aerosol distributions with an aerosol assimilation. J. Geophys. Res., 106 , 73377356.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., and Coauthors, 2001: Stratospheric water vapor increases over the past half-century. Geophys. Res. Lett., 28 , 11951198.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612286.

  • Rotstayn, L. D., B. F. Ryan, and J. J. Katzfey, 2000: A scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large-scale models. Mon. Wea. Rev., 128 , 10701088.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40 , 11851206.

    • Search Google Scholar
    • Export Citation
  • Salam, A., and Coauthors, 2006: Ice nucleation studies of mineral dust particles with a new continuous flow diffusion chamber. Aerosol Sci. Technol., 40 , 134143.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 2005: Dusty ice clouds over Alaska. Nature, 434 , 456.

  • Sassen, K., P. J. DeMott, J. M. Prospero, and M. R. Poellot, 2003: Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results. Geophys. Res. Lett., 30 .1633, doi:10.1029/2003GL017371.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., 2002: Contrails cirrus. Cirrus, D. K. Lynch et al., Eds., Oxford University Press, 231–255.

  • Seo, E-K., and G. Liu, 2006: Determination of 3D cloud ice water contents by combining multiple data sources from satellite, ground radar, and a numerical model. J. Appl. Meteor. Climatol., 45 , 14941504.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S., 2002a: A microphysical connection among biomass burning, cumulus clouds, and stratospheric moisture. Science, 295 , 12721275.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S., 2002b: Aerosol and ice particles size in tropical cumulonimbus. J. Climate, 15 , 10511063.

  • Smith, W. L., S. Ackerman, H. Revercomb, H. Huang, D. H. DeSlover, W. Feltz, L. Gumley, and A. Collard, 1998: Infrared spectral absorption of nearly invisible cirrus clouds. Geophys. Res. Lett., 25 , 11371140.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S. C. Tsay, P. W. Stackhouse, and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci., 47 , 17421753.

    • Search Google Scholar
    • Export Citation
  • Ström, J., and S. Ohlsson, 1998: In situ measurements of enhanced crystal number densities in cirrus clouds caused by aircraft exhaust. J. Geophys. Res., 103 , 1135511361.

    • Search Google Scholar
    • Export Citation
  • Su, H., W. G. Read, J. H. Jiang, J. W. Waters, D. L. Wu, and E. J. Fetzer, 2006: Enhanced positive water vapor feedback associated with tropical deep convection: New evidence from Aura MLS. Geophys. Res. Lett., 33 .L05709, doi:10.1029/2005GL025505.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1988: Parameterization of condensation and associated clouds in models for weather prediction and general circulation simulation. Physically-Based Modelling and Simulation of Climate and Climate Change, M. E. Schlesinger, Ed., Vol. 1, Kluwer Academic, 433–461.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., K. Gierens, and G. Rädel, 2007: Ice supersaturation in the ECMWF Integrated Forecast System. Quart. J. Roy. Meteor. Soc., 133 , 5363.

    • Search Google Scholar
    • Export Citation
  • Wang, P-H., P. Minnis, M. P. McCormick, G. S. Kent, G. K. Yue, D. F. Young, and K. M. Skeens, 1996: A 6-year climatology of cloud occurence frequency from Stratospheric Aerosol and Gas experiment II observations (1985–1990). J. Geophys. Res., 101 , 2940729429.

    • Search Google Scholar
    • Export Citation
  • Waters, J. W., and Coauthors, 1999: The UARS and EOS Microwave Limb Sounder (MLS) experiments. J. Atmos. Sci., 56 , 194218.

  • Wu, D. L., J. H. Jiang, and C. P. Davis, 2006: EOS MLS cloud ice measurements and cloudy-sky radiative transfer model. IEEE Trans. Geosci. Remote Sens., 44 , 11561165.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., and W. P. Menzel, 1999: Eight years of high cloud statistics using HIRS. J. Climate, 12 , 170184.

  • Wyser, K., 1998: The effective radius in ice clouds. J. Climate, 11 , 17931802.

  • Xu, K-M., and S. K. Krueger, 1991: Evaluation of cloudiness parameterizations using a cumulus ensemble model. Mon. Wea. Rev., 119 , 342367.

    • Search Google Scholar
    • Export Citation
  • Young, K. C., 1974: The role of contact nucleation in ice phase initiation in clouds. J. Atmos. Sci., 31 , 768776.

  • Zhang, J., U. Lohmann, and P. Stier, 2005: A microphysical parameterization for convective clouds in the ECHAM5 climate model: Single-column model results evaluated at the Oklahoma Atmospheric Radiation Measurement Program site. J. Geophys. Res., 110 .D15S07, doi:10.1029/2004JD005128.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., W. Lin, C. B. Bretherton, J. J. Hack, and P. J. Rasch, 2003: A modified formulation of fractional stratiform condensation rate in the NCAR Community Atmosphere Model (CAM2). J. Geophys. Res., 108 .4035, doi:10.1029/2002JD002523.

    • Search Google Scholar
    • Export Citation
  • Zuberi, B., A. K. Betram, C. A. Cassa, L. T. Molina, and M. J. Molina, 2002: Heterogeneous nucleation of ice in H2SO4-H2O particles with mineral dust immersions. Geophys. Res. Lett., 29 .1504, doi:10.1029/2001GL014289.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1823 818 51
PDF Downloads 746 177 4